總結是對過去一定時期的工作、學習或思想情況進行回顧、分析,并做出客觀評價的書面材料,它有助于我們尋找工作和事物發(fā)展的規(guī)律,從而掌握并運用這些規(guī)律,是時候寫一份總結了。相信許多人會覺得總結很難寫?下面是小編為大家?guī)淼目偨Y書優(yōu)秀范文,希望大家可以喜歡。
八年級數(shù)學乘法公式教學反思總結篇一
一、設疑導思 探索公式--------引導者
教師的主導作用首先體現(xiàn)在培養(yǎng)學生的學習興趣方面。因為教師是課堂心理環(huán)境的直接創(chuàng)造者,教師“導入”的情境、語言、方法直接影響學生的學習興趣及其探索知識的欲望。由于我校學生的基礎都不是很好,所以本課采用學生剛學過的“多項式乘法法則”來吸引學生的注意力,提高學生的學習興趣,從而使其端正學習態(tài)度全神貫注地投入到學習的整個過程中。
二、激活主題 理解公式--------促進者
教師的主導作用還應體現(xiàn)在積極進行學法研究,加強學法指導。本節(jié)課中,先用圖形的面積來對公式作出直觀的理解,再用口訣來概括公式,使學生對公式的理解更加形象生動;最后通過例題讓學生按公式對號入座,進一步理解公式中的a和b既可以表示數(shù)也可以表示字母,既可以表示單項式也可以表示多項式。采用由直觀到抽象,由抽象到形象,由形象到具體,層層遞進,由淺入深,深入淺出的辦法,使學生對完全平方公式有一個充分理解的過程。
三、組織交流 應用公式--------調控者
由于學生所處的文化環(huán)境、知識基礎和自身的思維方式不同,將導致不同的學習結果,即使是思維反映很靈敏的學生,在有些時刻也會遇到一些思維障礙。本節(jié)課在學生練習過程中,要仔細觀察學生探索活動的情緒表現(xiàn),從學生的言語、表情、眼神、手勢和體態(tài)等方面觀察他們的內心活動,分析他們的思維狀態(tài)和概念水平,捕捉各種思維現(xiàn)象,隨時調整教學過程,讓學生自己去反思、糾錯,而教師則在關鍵時刻引導或者作出恰當?shù)狞c撥。教師的主導作用還應體現(xiàn)在及時發(fā)現(xiàn)學生思維發(fā)展中出現(xiàn)的錯誤后有針對地指導、引導學生進行討論和探究。尤其是對(—2a—5)2的應用可以看成〔(—2a)+(—5)〕2對應(a+b)2,也可以看成〔(—2a)—5〕2對應(a—b)2;更可以看成〔—(2a +5)〕2=(2a+5)2;而對于(a+b+c)2的應用,可以用多項式乘法法則(a+b+c)(a+b+c),也可以用完全平方公式,看成〔(a+b)+c〕2,也可以看成〔a+(b+c)〕2,不管是什么形式,最后結果是一樣的。這樣通過變式練習,從而使學生多角度、全方面地對完全平方公式進行充分認識,完全平方公式中的a和b可以表示單項式也可以表示多項式,完全平方公式可以看成一個公式也可以看成兩個公式,增加學生對完全平方公式應用的靈活性,要讓不同的學生得到不同的發(fā)展。
四、明晰結論 深化公式--------提高者
教師主導作用應是畫龍點睛作用。觀察思考、表達是伴隨探究過程不可或缺的因素。本節(jié)課中,通過糾錯練習,對四道題的正確答案進行比較分析得出總結:如果a、b的符號相同,乘積的2倍的符號用“+”;如果a、b的符號相反,乘積的2倍的符號用“—”。使學生對公式的認識從感性認識上升到理性認識,思維從復合階段前進到明晰階段。通過對公式的缺項選擇填空練習,使學生對完全平方公式的認識進一步升華。
八年級數(shù)學乘法公式教學反思總結篇二
乘法公式是整式乘法的重要內容,也是今后學習數(shù)學的重要工具,要學好這部分,除了要注意1、掌握公式的幾何意義比如完全平方公式。2、注意掌握公式的結構特點,掌握公式的結構特點是正確使用公式的前提。如平方差公式的結構特點是:公式的左邊是這兩個二項式的積,且這兩個二項式有一項完全相同,另一項互為相反數(shù),公式的右邊是這兩項的平方差,且是左邊的相同的一項的平方減去互為相反數(shù)的一項的平方。掌握了這些特點,就能在各種情況下正確運用平方差公式進行計算了。3、 注意公式中字母的廣泛意義,乘法公式中的字母既可以代表任意的數(shù),又可以代表代數(shù)式,只有注意到字母所表示的意義的廣泛性,就能擴大乘法公式的應用范圍。
以上3點是掌握任何公式必備的條件,但是在掌握以上三點,我們要高瞻遠矚,對課本中的教材必須要看的更深也更廣,所以我就在學生對乘法公式的基礎知識掌握的還不錯的基礎上,專門提出了今天的內容,可以說是帶點專題性質也可以說是課本知識的一種延續(xù),讓學生還要注意乘法公式的逆用,不僅要掌握乘法公式的正向應用,還要注意掌握公式的逆向應用,乘法公式均可逆用,特別是完全平方公式的逆用就是配方,配方是一種很重要的數(shù)學思想方法,它的應用非常廣泛。還要注意乘法公式的變形,要善于對公式變形的應用,在解題中充分體現(xiàn)應用公式的思維靈活性和廣泛性。同學們在運用公式時,不應拘泥于公式的形式而要深刻理解、靈活運用。
在課堂的反映中,我深刻的感到這個這樣的教學內容雖然脫離了課本,但是又和課本內容緊密聯(lián)系非常受學生歡迎,主要表現(xiàn)在學生的注意力相當集中,盡管沒有讓更多的同學表達他們的思路,但是讓同學們的思維都動了起來,當有些同學有了自己的思路之后,都能大膽地發(fā)表自己的見解,或者在老師的啟示下能夠產生新的解題方法,但是我也發(fā)現(xiàn)對部分領悟能力較弱的孩子有一定的困難,需要老師把解題過程能夠全部的展現(xiàn)出來。
反思四:乘法公式教學反思
“蘇科版”數(shù)學教材在七年級下冊的的第九章《整式的乘法與因式分解》中安排了“乘法公式”這部分內容。根據過往學生的認識過程來看,學生的定向思維就認為兩數(shù)的和的平方等于兩數(shù)的平方和,而且還是根深蒂固的,那么如何在教學中轉變或是加深學生對此公式的正確認識呢? 教材做了合理的安排,較好的方法是用“數(shù)形結合”,借助面積相等幫助代數(shù)恒等式的學習。
從人類思維活動規(guī)律的角度來考察,主體思維活動可以分成邏輯思維、形象思維和靈感思維,它們都是學習和研究數(shù)學的思維方式。其中形象思維是人腦憑借事物的形象進行思維。所謂形象是指反映于人腦中的客體的映象。這種映象可以以物化的形式再現(xiàn)出來,并被人感知。
腦科學研究表明,邏輯思維主要發(fā)揮左腦半球的功能,形象思維則是發(fā)揮右腦半球的功能,如果適時進行形象思維,充分發(fā)揮感觀的作用,就能使左右腦并用,提高大腦的整體功能,使抽象的研究對象具體化,具有空間觀,從而便于認識隱蔽在事物深層的本質和規(guī)律。這正是學習、研究數(shù)學,提高數(shù)學能力的有效途徑和方法。
另外,從初中學生的思維特點來看,他們的思維是從具體形象思維為主要形式逐步向抽象邏輯思維過渡,但這時的邏輯思維是思維是初步的,且在很大程度上仍具有具體形象性。因此,適時利用形象思維,既符合初中生的思維特點,也是進一步培養(yǎng)他們數(shù)學能力的有效途徑。
在“蘇科版”《數(shù)學》教材中,每個章節(jié)的內容較多的采用“學生做-在做中感受和體驗-主動獲取數(shù)學知識”的方式呈現(xiàn),在學生通過“做”獲得感受的基礎上,揭示具體實例的本質,然后再明晰有關知識。我認為這里的在“做中感受和體驗”就是引導學生進行形象思維的過程。
在推導整式的乘法公式時,我課堂教學中改變了過去應用多項式乘以多項式的法則直接得到結論的做法,是通過計算圖形的面積的方法得到。從代數(shù)式的幾何意義出發(fā),激發(fā)學生的圖形觀,利用拼圖的方法,使學生在動手的試驗中發(fā)現(xiàn)、歸納公式,教學的效果較好。
八年級數(shù)學乘法公式教學反思總結篇三
我們常有這樣的困惑:不僅是講了,而且是講了多遍,可是學生的解題能力就是得不到提高!也常聽見學生這樣的埋怨:鞏固題做了千萬遍,數(shù)學成績卻遲遲得不到提高!這應該引起我們的反思了。誠然,出現(xiàn)上述情況涉及方方面面,但其中的例題教學值得反思,數(shù)學的例題是知識由產生到應用的關鍵一步,即所謂”拋磚引玉”,然而很多時候只是例題繼例題,解后并沒有引導學生進行反思,因而學生的學習也就停留在例題表層,出現(xiàn)上述情況也就不奇怪了?!睂W而不思則罔”,”罔”即迷惑而沒有所得,把其意思引申一下,我們也就不難理解例題教學為什么要進行解后反思了。事實上,解后反思是一個知識小結、方法提煉的過程;是一個吸取教訓、逐步提高的過程;是一個收獲希望的過程。從這個角度上講,例題教學的解后反思應該成為例題教學的一個重要內容。本文擬從以下三個方面作些探究。
一、在解題的方法規(guī)律處反思
例題千萬道,解后拋九霄”難以達到提高解題能力、發(fā)展思維的目的。善于作解題后的反思、方法的歸類、規(guī)律的小結和技巧的揣摩,再進一步作一題多變,一題多問,一題多解,挖掘例題的深度和廣度,擴大例題的輻射面,無疑對能力的提高和思維的發(fā)展是大有裨益的。
通過例題的層層變式,學生對三邊關系定理的認識又深了一步,有利于培養(yǎng)學生從特殊到一般,從具體到抽象地分析問題、解決問題;通過例題解法多變的教學則有利于幫助學生形成思維定勢,而又打破思維定勢;有利于培養(yǎng)思維的變通性和靈活性。
二,在學生易錯處反思
學生的知識背景、思維方式、情感體驗往往和成人不同,而其表達方式可能又不準確,這就難免有”錯”。例題教學若能從此切入,進行解后反思,則往往能找到”病根”,進而對癥下藥,常能收到事半功倍的效果!
因為整個的解題過程并非僅僅只是一個知識運用、技能訓練的過程,而是一個伴隨著交往、創(chuàng)造、追求和喜、怒、哀、樂的綜合過程,是學生整個內心世界的參與。其間他既品嘗了失敗的苦澀,又收獲了”山重水復疑無路,柳暗花明又一村”的喜悅,他可能是獨立思考所得,也有可能是通過合作協(xié)同解決,既體現(xiàn)了個人努力的價值,又無不折射出集體智慧的光芒。在此處引導學生進行解后反思,有利于培養(yǎng)學生積極的情感體驗和學習動機;有利于激勵學生的學習興趣,點燃學習的熱情,變被動學習為自主探究學習;還有利于鍛煉學生的學習毅力和意志品格。同時,在此過程中,學生獨立思考的學習習慣、合作意識和團隊精神均能得到很好的培養(yǎng)。
數(shù)學教育家弗賴登塔爾就指出:反思是數(shù)學活動的核心和動力。總之,解后的反思方法、規(guī)律得到了及時的小結歸納;解后的反思使我們撥開迷蒙,看清”廬山真面目”而逐漸成熟起來;在反思中學會了獨立思考,在反思中學會了傾聽,學會了交流、合作,學會了分享,體驗了學習的樂趣,交往的快慰。
八年級數(shù)學乘法公式教學反思總結篇四
今天我上了一節(jié)余角與補角的新課。我以為這個知識點很簡單,所以就忽略很多細節(jié)問題。雖然我準備的很充分,但是還是存在很多的問題。
首先,我利用實物三角板得出三角板的兩個銳角的和是90°,我就直接過渡到互余的定義。其實我指導老師給我的建議是得出兩個角和為90°后,例如∠1+∠2=90°,我就應該跟學生說:“∠1是∠2的余角,∠2是∠1的余角”這樣學生更加容易理解。說出這個之后,我才正確的敘述一次互余的定義。
我是利用通過教授互余的定義,然后讓學生自學得出互補的定義。學生基本能夠通過書本得出互補的定義出來。我把互余跟互補的定義教授完之后。我就出一組已知一個銳角,求它的余角跟補角的題目。我發(fā)現(xiàn)一開始只有小部分的同學會做,我就意識我之前都是在叫文字類的東西,都沒有把文字轉換為數(shù)學語言。我就馬上補救,我通過講兩個角和等于90°得到她們互余,就知道已知角∠α求它的補角就應該是90°—∠α,求它的補角就應該是180°—∠α。例如求角為5°的余角就是90°—5°=85°,它的補角就是18 0°—5°175°。我發(fā)現(xiàn)通過講授如果做題之后,她們基本所有的同學都掌握了這個知識點。
通過求已知銳角的余角、補角,引導學生得出一個銳角的補角比它的余角要大90°的結論。
我通過兩個題目來檢驗學生是否理解的這個結論我就出了下面兩道題:
1、一個角的余角是∠,它的補角是∠ 求∠ —∠=______°
2、如果一個角的補角是150°求這個角的余角=_________°
學生一下就得出了答案,我是低估了學生的能力。
總的來說,我覺得自己收獲很大。以后我會不斷改進自己的教案,爭取得到最好的效果。
八年級數(shù)學乘法公式教學反思總結篇五
(1) “分”與“合”是數(shù)的組成的兩個方面,是10以內數(shù)的加法和減法的重要基礎。大多數(shù)學生喜歡計算加法從“合”的角度求和,計算減法從“分”的角度求差。教材引導學生逐漸掌握“分”與“合”的關系。
① 教學4的組成,先認識“分”,再認識“合”,把“分”與“合”分開教學,便于逐個理解含義,初步感受它們是有聯(lián)系的。
② 教學5的組成,同時提出“分”與“合”的問題,引導學生從“分”立即說出“合”,使兩者成為有機聯(lián)系的整體。
③ 第33頁第1、2題,第36頁第1題,第37頁第1題,教學6、7、8、9、10各數(shù)的分解后,專題練習這些數(shù)的“合”。用“分”的知識回答“合”的問題,體會“分”與“合”是相互促進的,只要記住了“分”,就能說出“合”。
(2) 除2以外,3~10各數(shù)都有兩種或多種分解。把一個數(shù)的各種分解有序地依次排列是對稱的。如5的分解:
掌握這種對稱,能提高學習效率,減輕記憶負擔。教材引導學生逐步理解和應用這種對稱。
① 教學4的組成,雖然4分成3和1、2和2、1和3是對稱的,但考慮到初步教學數(shù)的組成,重點應放在理解“分”與“合”的意義和研究數(shù)的組成的學習活動上,暫時不揭示這種對稱。
② 教學5的組成,通過兩個學生在不同位置觀察5朵花擺成1朵和4朵的同一種分法,體會541和 514是一致的,實質上是一組分解的兩種表達。然后讓學生看著5朵花擺成2朵和3朵的圖,寫出這組分解的兩種表示。教材給一種表達畫上虛線框,讓學生明白它可以從另一種表達得到。
③ 教學6和7的組成,根據一幅圖寫出數(shù)的一組分解,虛線框里的表達直接從左邊得到。感受研究6、7的組成,只要進行三次操作就夠了,為提高8、9、10的組成的教學效率打下基礎。
④ 教學8、9、10的組成,通過“你還能想到什么”引導學生從這些數(shù)的一些分解說出另一些分解。體會較大數(shù)的組成,只要記住其中的一半,就記住了另一半。
八年級數(shù)學乘法公式教學反思總結篇六
“新課程標準”強調學生的“經歷,體驗和自主探索”,突出過程性目標,實現(xiàn) 教的轉變、學的轉變、課堂氣氛的轉變 。下面以《中心對稱》一課為例,進行反思。
一、關于概念的教學
中心對稱概念的引出。學生在初二上學期學習了軸對稱的有關知識,我設計先復習軸對稱概念和性質。本課在揭示中心對稱的概念和性質時,加強了和軸對稱的辨析,讓學生在類比和辨析中更好地掌握中心對稱這一概念,從而達到理想的效果。
二、教的轉變:本節(jié)課我把自己的角色從知識的傳授者轉變?yōu)閷W生學習的組織者、引導者、合作者與共同研究者。在引導學生畫中心對稱圖時,我只給出一個三角形,讓學生把對稱中心定在不同的位置。突出以學生為主體的要求。讓學生通過畫圖歸納出中心對稱的性質,達到激發(fā)學生自覺地探究數(shù)學問題,體驗發(fā)現(xiàn)的樂趣的目的。
三、學的轉變:學生的角色從學會轉變?yōu)闀W。本節(jié)課學生不是停留在學會課本知識的層面上,而是站在研究者的角度深入其境。讓學生設計上面的各種類型圖,學生自己去解答, 學生通過自主活動發(fā)現(xiàn)了規(guī)律,增強了學生自主學習的意識,增加了他們學習數(shù)學的信心。
四、課堂氛圍的轉變:整節(jié)課以 流暢、開放、合作、 隱 導 為基本特征,教師對學生的思維活動減少干預,教學過程呈現(xiàn)一種比較流暢的特征,整節(jié)課學生與學生、學生與教師之間以 對話 、 討論 為出發(fā)點,以互助、合作為手段,以解決問題為目的,讓學生在一個較為寬松的環(huán)境中自主選擇獲得成功的方向,判斷發(fā)現(xiàn)的價值。
五、重視知識與生活的聯(lián)系
數(shù)學的教學不僅要考慮數(shù)學自身的特點,更應遵循學生學習數(shù)學的心理規(guī)律,強調從學生已有的生活經驗出發(fā),讓學生親身經歷將實際問題抽象成數(shù)學模型,并進行解釋與應用的過程,進而使學生獲得對數(shù)學理解的同時,在思維能力情感態(tài)度與價值觀等多方面得到進步。 本節(jié)我設計如下聯(lián)系生活的題:利用中心對稱測量河寬
六、不足之處
1、軸對稱的概念強調不到位、不夠細致,尤其是對稱點的概念。給學生消化理解的時間太短。
2、沒講中心對稱與旋轉對稱的關系。
3、聯(lián)系生活的例子離學生經歷太遠,如舉測小口瓶子的內徑,能使學生親自動手就更好了。
八年級數(shù)學乘法公式教學反思總結篇七
1、心理素質方面
面對那么多聽課的教師,孩子們和往常一樣,積極的思考,大膽的表達自己不同的想法,看到孩子們的自信和飽滿的精神狀態(tài),我為他們高興。可是自己呢?一開始就自亂陣腳,看到學生在黑板上畫的40°角,腦子一熱,心里想:怎么和我讓他們嘗試畫的角度數(shù)一樣呢?其實第一次嘗試是讓畫30°角的,第二次嘗試才讓畫40°角,可當時一迷,也忘記了讓學生說說三角尺各個角的度數(shù),就讓學生先嘗試畫40°的了,第二次再畫30°的角,后來也讓學生復習了三角尺各個角的度數(shù),但是整個教學環(huán)節(jié)顯得亂了。
心理素質是人整體素質的重要組成部分。心理素質的好壞直接能影響一個人的生活質量和工作效率。多年來,只要有人聽課,特別是有領導在場,沒有一節(jié)課講的讓人滿意。每次講課之后就會痛很久,不過這次,我沒有痛的感覺,知道了自己的毛病在哪里,我很高興。
我總是對孩子們說:“你能行”“你是最棒的”“我相信你”,就這幾句話讓很多孩子自信起來,讓他們對自己的學習充滿了希望。我為什么不可以這樣勉勵自己呢?我真的相信,只要我堅持不懈的努力,各方面的素質都會提高,我的數(shù)學課一定能達到優(yōu)質、高效的效果。
2、問題設置方面
在課堂上,面對教師提的問題,孩子們不去積極的思考,或者出現(xiàn)孩子們的回答脫離了教學的核心,答非所問,那一定是教師所提的問題出現(xiàn)了問題。在《角的畫法》這節(jié)課中,我設置了這樣一個這樣的問題“用三角尺還能畫出那些角?”一個孩子說:“可以畫出銳角、直角、鈍角、平角、周角?!碑敃r我一聽,懵了,怎么這么回答啊,咋不是“30°、60°、90°、45°”呢?孩子們也在下面吵開了,有的說用三角尺不能畫周角,有的說可以畫周角。我當時也想不到用三角尺怎么拼出一個周角,就很奇怪的問孩子們怎么畫,孩子們肯定受到我表情的影響,陷入了沉默。最后只好對孩子們說,這個問題我們下去再說,就敷衍過去了。出現(xiàn)這個意外,就是我的問題針對性不強,不夠具體,結果出現(xiàn)了孩子們的回答不是預設的結果。如果這樣問:“用三角尺還可以直接畫出那些度數(shù)的角?”我想就不會節(jié)外生枝了。
課堂的提問一定要緊緊圍繞教學目標,針對教學內容的重點、難點設計,提出的問題要明確具體,才能使孩子們明確思維的方向。這些以前都知道,但僅僅是知道,沒有感悟,而今天課堂上的這個意外,讓我悟到了:課堂的提問也是一門學問,更是一門藝術。你問得好,問的巧,教學就有效,孩子們的思維也能得到發(fā)展,使孩子們變得聰明,反之,就會阻礙孩子們的發(fā)展。
3、課堂生成方面
課堂的生成可分為預設生成和非預設生成,非預設生成是指在課堂的師生互動中,學生提供的學習材料、學習的思維成果和學生開展操作獲得的結論等,是教師預先所沒有料到的;簡單地說,就是指教師預設之外而又有意義的學習生成。在《角的畫法》一課中,在畫完40°角,小組交流畫法之后,我讓學生匯報。有個孩子說了這樣一種畫法:先畫一個點,量角器的中心點與這個點重合,在0刻度線和40°的地方點上點,然后連線,畫出40°的角。他這種畫法結果是正確的,可是與教材中畫角的步驟不符合,雖然我當時表揚他是個愛思考的孩子,但卻不敢肯定孩子的畫法。后來在研討中,這也成為一個研討的焦點。有的教師認為這樣做也可以,有的教師認為這樣的畫法是不規(guī)范的。
課后我查閱了資料,又在網上請教了一些教師。最后認定:這樣畫角是可以的。只是我當時在課堂上沒有抓住時機,進行恰當?shù)奶幚?。如果我當時肯定孩子的畫法,并告訴孩子:“其實你這樣畫,和書上的畫法是一樣的,你先確定的第一個點是射線的端點,也就是角的頂點,對準0刻度線和40刻度的這兩個點確定了兩條射線,也就是角的兩條邊的位置。只是書上先畫了一條射線,而你是先通過點點,確定了射線的位置后,才畫射線的。這樣一分析,把孩子的思維和教材上的畫法做了一個對接,使孩子們在對角的認識上又有了更深刻的理解。
這個生成之所以處理的不到位,其實是教師在專業(yè)知識方面的欠缺。看來,要學習的東西還很多。
八年級數(shù)學乘法公式教學反思總結篇八
在教學《測量》時 ,我是這樣講的:
首先我先讓學生分組合作用自己的方法測量出十米的距離(在教室外),然后讓學生匯報測量方法;接著把學生按高矮分兩組手拉手看十米需要幾個學生,再讓學生走一走,看自己走十米需要幾步,最后讓學生說一說大約十米的物品。
在進行操場測量時,由于學校沒有操場,我讓學生先測量了一下學校院子的東西長度,然后讓學生試一試在一分鐘內走多少米,再 讓學生分組走四百米(學生不知道),告訴學生走四百米用的時間,然后讓學生估算一下標準操場的長度。
最后的作業(yè)讓學生完成在“做一做”中的3.
整堂課上的很累,一是學生有點亂,而是感覺教的有點死板,很機械,課堂氣氛不活躍。
這堂課的優(yōu)點:
教材與實地結合,學校沒有操場,怎么辦,這一部分占課堂近二分之一的時間。我將學校院子的長度作為操場,然后讓學生走一走,估計一下。這基本上能讓學生在印象中有一個標準操場的樣子。
自主學習。在本課中,因為需要學生動手的多,也因為老師的經驗不能代替學生的實踐,我讓學生分組來進行測量,親自動手做,教師只起指導作用,這樣,學生無拘無束,能調動學生的 學習積極性,也能提高學生的動手動腦能力,培養(yǎng)學生的合作能力。
不足:
測量操場沒有讓學生自己測,我在進行教學設計時,感到教材例題與習題矛盾,你都量了,還讓學生走什么,估算什么,所以就省略了這一環(huán)節(jié)。
事后,我感覺講這一課經驗太少,不知道到底怎樣才能輕松而又有效的上好這一課,因此,懇請同仁多加指導。
八年級數(shù)學乘法公式教學反思總結篇九
在我們走入新課程的這段時間,我對自己過去的教學思想和行為進行了反思,用新課程的理念,對曾經被視為經驗的觀點和做法進行了重新審視,現(xiàn)將在反思中得到的體會總結出來,以求與同行共勉。
一、教學中要轉換角色,改變已有的教學行為
(1)新課程要求教師由傳統(tǒng)的知識傳授者轉變?yōu)閷W生學習的組織者。
(2)教師應成為學生學習活動的引導者。
(3)教師應從“師道尊嚴”的架子中走出來,成為學生學習的參與者。
二、教學中要“用活”教材
三、教學中要尊重學生已有的知識與經驗
教學反思,或稱為“反思性教學”,是指教師在教學實踐中,批判地考察自我的主體行為表現(xiàn)及其行為依據,通過觀察、回顧、診斷、自我監(jiān)控等方式,或給予肯定、支持與強化,或給予否定、思索與修正,將“學會教學”與“學會學習”結合起來,從而努力提升教學實踐的合理性,提高教學效能的過程。教學反思被認為是“教師專業(yè)發(fā)展和自我成長的核心因素”。美國學者波斯納認為,沒有反思的經驗是狹隘的經驗,至多只能形成膚淺的知識。只有經過反思,教師的經驗方能上升到一定的高度,并對后繼行為產生影響。他提出了教師成長的公式:教師的成長=經驗+反思。那么,我們應如何在教學反思中學會教學呢?
1、傳統(tǒng)數(shù)學教學的反思
傳統(tǒng)數(shù)學教學實踐中,由于對教育目的價值取向的偏差,往往僅把學生當作教育的對象和客體,忽視學生的自主意識、創(chuàng)新精神的培養(yǎng),忽視學生主體性的發(fā)展,主要表現(xiàn)在:(1)重教而不重學生,如講細講透、面面俱到、滴水不漏的教學表演,往往就被認為是一節(jié)好課;(2)重管教而不重自覺,如教學過程中不重視學生的自我調控、獨立判斷;(3)重統(tǒng)一而不重多樣,如學生幾乎沒有可能自由選擇學習內容或自行規(guī)劃、安排學習進程,教學要求強求一律,學生間的個性差異得不到承認;(4)重傳授而不重探索,如將學生視為承受知識的容器,教學中一味填鴨灌輸、包辦代替;(5)重繼承而不重創(chuàng)新;(6)重結果而不重過程;(7)重考試成績而不重全面發(fā)展……這一切不僅造成了學生學習興趣下降,學業(yè)負擔加重,探索精神萎縮,而且極大地妨礙了學生主體性發(fā)展,影響了教育方針的全面貫徹落實,也必將影響到社會發(fā)展。
培養(yǎng)、發(fā)展人的主體性,是教育改革的一個主題,也是深化改革的一個重要突破口。數(shù)學教學不僅要使學生“接受”、“適應”已有的和既定的一切,也要使他們具有改造和發(fā)展現(xiàn)存社會及現(xiàn)存自我的能力。弘揚和培植學生的主體性,在教育教學活動中突出學生的主體地位,強調教學民主,強調自我激勵,強調學會學習,將使學生獲益終身。
2、數(shù)學學習中的“思”與“問”
很多學生認為數(shù)學抽象,難學,但又一時找不到好的學習方法,有的同學認為,只要上課認真聽講、課下仔細看書,平時多做些題就能把數(shù)學學好,他們也試著這樣去做了,可是效果并不理想,那是為什么呢?我想忽視了“思”與“問”在學習中的重要作用。
孔子曰:“學而不思則罔,思而不學則殆?!边@句話充分指出了學與思的辨證關系。告誡大家在學習中要重視積極思考,才會有收獲。數(shù)學課程并不是記住幾個概念,幾條結論就能解決很多問題,僅僅靠死記硬背,生搬硬套是行不通的。不是看懂的,也不是聽懂的,是想懂的。數(shù)學內容來源于自然現(xiàn)象及生活實踐,是研究自然規(guī)律的;題型靈活多變,必須深入理解,弄清概念規(guī)律的來龍去脈,這需要有較好的理解能力、觀察能力、邏輯思維能力,空間想象能力、分析問題的能力、利用數(shù)學知識處理問題的能力等。
學習的成功與否,關鍵在于能否正確的處理好“思”與“問”的關系??梢哉f沒有思考就沒有進步,沒有問題就沒有提高。在學習的過程中,應注意積極地思考,善于提出問題,解決問題,在“思”中進步,在“問”中升華。
八年級數(shù)學乘法公式教學反思總結篇一
一、設疑導思 探索公式--------引導者
教師的主導作用首先體現(xiàn)在培養(yǎng)學生的學習興趣方面。因為教師是課堂心理環(huán)境的直接創(chuàng)造者,教師“導入”的情境、語言、方法直接影響學生的學習興趣及其探索知識的欲望。由于我校學生的基礎都不是很好,所以本課采用學生剛學過的“多項式乘法法則”來吸引學生的注意力,提高學生的學習興趣,從而使其端正學習態(tài)度全神貫注地投入到學習的整個過程中。
二、激活主題 理解公式--------促進者
教師的主導作用還應體現(xiàn)在積極進行學法研究,加強學法指導。本節(jié)課中,先用圖形的面積來對公式作出直觀的理解,再用口訣來概括公式,使學生對公式的理解更加形象生動;最后通過例題讓學生按公式對號入座,進一步理解公式中的a和b既可以表示數(shù)也可以表示字母,既可以表示單項式也可以表示多項式。采用由直觀到抽象,由抽象到形象,由形象到具體,層層遞進,由淺入深,深入淺出的辦法,使學生對完全平方公式有一個充分理解的過程。
三、組織交流 應用公式--------調控者
由于學生所處的文化環(huán)境、知識基礎和自身的思維方式不同,將導致不同的學習結果,即使是思維反映很靈敏的學生,在有些時刻也會遇到一些思維障礙。本節(jié)課在學生練習過程中,要仔細觀察學生探索活動的情緒表現(xiàn),從學生的言語、表情、眼神、手勢和體態(tài)等方面觀察他們的內心活動,分析他們的思維狀態(tài)和概念水平,捕捉各種思維現(xiàn)象,隨時調整教學過程,讓學生自己去反思、糾錯,而教師則在關鍵時刻引導或者作出恰當?shù)狞c撥。教師的主導作用還應體現(xiàn)在及時發(fā)現(xiàn)學生思維發(fā)展中出現(xiàn)的錯誤后有針對地指導、引導學生進行討論和探究。尤其是對(—2a—5)2的應用可以看成〔(—2a)+(—5)〕2對應(a+b)2,也可以看成〔(—2a)—5〕2對應(a—b)2;更可以看成〔—(2a +5)〕2=(2a+5)2;而對于(a+b+c)2的應用,可以用多項式乘法法則(a+b+c)(a+b+c),也可以用完全平方公式,看成〔(a+b)+c〕2,也可以看成〔a+(b+c)〕2,不管是什么形式,最后結果是一樣的。這樣通過變式練習,從而使學生多角度、全方面地對完全平方公式進行充分認識,完全平方公式中的a和b可以表示單項式也可以表示多項式,完全平方公式可以看成一個公式也可以看成兩個公式,增加學生對完全平方公式應用的靈活性,要讓不同的學生得到不同的發(fā)展。
四、明晰結論 深化公式--------提高者
教師主導作用應是畫龍點睛作用。觀察思考、表達是伴隨探究過程不可或缺的因素。本節(jié)課中,通過糾錯練習,對四道題的正確答案進行比較分析得出總結:如果a、b的符號相同,乘積的2倍的符號用“+”;如果a、b的符號相反,乘積的2倍的符號用“—”。使學生對公式的認識從感性認識上升到理性認識,思維從復合階段前進到明晰階段。通過對公式的缺項選擇填空練習,使學生對完全平方公式的認識進一步升華。
八年級數(shù)學乘法公式教學反思總結篇二
乘法公式是整式乘法的重要內容,也是今后學習數(shù)學的重要工具,要學好這部分,除了要注意1、掌握公式的幾何意義比如完全平方公式。2、注意掌握公式的結構特點,掌握公式的結構特點是正確使用公式的前提。如平方差公式的結構特點是:公式的左邊是這兩個二項式的積,且這兩個二項式有一項完全相同,另一項互為相反數(shù),公式的右邊是這兩項的平方差,且是左邊的相同的一項的平方減去互為相反數(shù)的一項的平方。掌握了這些特點,就能在各種情況下正確運用平方差公式進行計算了。3、 注意公式中字母的廣泛意義,乘法公式中的字母既可以代表任意的數(shù),又可以代表代數(shù)式,只有注意到字母所表示的意義的廣泛性,就能擴大乘法公式的應用范圍。
以上3點是掌握任何公式必備的條件,但是在掌握以上三點,我們要高瞻遠矚,對課本中的教材必須要看的更深也更廣,所以我就在學生對乘法公式的基礎知識掌握的還不錯的基礎上,專門提出了今天的內容,可以說是帶點專題性質也可以說是課本知識的一種延續(xù),讓學生還要注意乘法公式的逆用,不僅要掌握乘法公式的正向應用,還要注意掌握公式的逆向應用,乘法公式均可逆用,特別是完全平方公式的逆用就是配方,配方是一種很重要的數(shù)學思想方法,它的應用非常廣泛。還要注意乘法公式的變形,要善于對公式變形的應用,在解題中充分體現(xiàn)應用公式的思維靈活性和廣泛性。同學們在運用公式時,不應拘泥于公式的形式而要深刻理解、靈活運用。
在課堂的反映中,我深刻的感到這個這樣的教學內容雖然脫離了課本,但是又和課本內容緊密聯(lián)系非常受學生歡迎,主要表現(xiàn)在學生的注意力相當集中,盡管沒有讓更多的同學表達他們的思路,但是讓同學們的思維都動了起來,當有些同學有了自己的思路之后,都能大膽地發(fā)表自己的見解,或者在老師的啟示下能夠產生新的解題方法,但是我也發(fā)現(xiàn)對部分領悟能力較弱的孩子有一定的困難,需要老師把解題過程能夠全部的展現(xiàn)出來。
反思四:乘法公式教學反思
“蘇科版”數(shù)學教材在七年級下冊的的第九章《整式的乘法與因式分解》中安排了“乘法公式”這部分內容。根據過往學生的認識過程來看,學生的定向思維就認為兩數(shù)的和的平方等于兩數(shù)的平方和,而且還是根深蒂固的,那么如何在教學中轉變或是加深學生對此公式的正確認識呢? 教材做了合理的安排,較好的方法是用“數(shù)形結合”,借助面積相等幫助代數(shù)恒等式的學習。
從人類思維活動規(guī)律的角度來考察,主體思維活動可以分成邏輯思維、形象思維和靈感思維,它們都是學習和研究數(shù)學的思維方式。其中形象思維是人腦憑借事物的形象進行思維。所謂形象是指反映于人腦中的客體的映象。這種映象可以以物化的形式再現(xiàn)出來,并被人感知。
腦科學研究表明,邏輯思維主要發(fā)揮左腦半球的功能,形象思維則是發(fā)揮右腦半球的功能,如果適時進行形象思維,充分發(fā)揮感觀的作用,就能使左右腦并用,提高大腦的整體功能,使抽象的研究對象具體化,具有空間觀,從而便于認識隱蔽在事物深層的本質和規(guī)律。這正是學習、研究數(shù)學,提高數(shù)學能力的有效途徑和方法。
另外,從初中學生的思維特點來看,他們的思維是從具體形象思維為主要形式逐步向抽象邏輯思維過渡,但這時的邏輯思維是思維是初步的,且在很大程度上仍具有具體形象性。因此,適時利用形象思維,既符合初中生的思維特點,也是進一步培養(yǎng)他們數(shù)學能力的有效途徑。
在“蘇科版”《數(shù)學》教材中,每個章節(jié)的內容較多的采用“學生做-在做中感受和體驗-主動獲取數(shù)學知識”的方式呈現(xiàn),在學生通過“做”獲得感受的基礎上,揭示具體實例的本質,然后再明晰有關知識。我認為這里的在“做中感受和體驗”就是引導學生進行形象思維的過程。
在推導整式的乘法公式時,我課堂教學中改變了過去應用多項式乘以多項式的法則直接得到結論的做法,是通過計算圖形的面積的方法得到。從代數(shù)式的幾何意義出發(fā),激發(fā)學生的圖形觀,利用拼圖的方法,使學生在動手的試驗中發(fā)現(xiàn)、歸納公式,教學的效果較好。
八年級數(shù)學乘法公式教學反思總結篇三
我們常有這樣的困惑:不僅是講了,而且是講了多遍,可是學生的解題能力就是得不到提高!也常聽見學生這樣的埋怨:鞏固題做了千萬遍,數(shù)學成績卻遲遲得不到提高!這應該引起我們的反思了。誠然,出現(xiàn)上述情況涉及方方面面,但其中的例題教學值得反思,數(shù)學的例題是知識由產生到應用的關鍵一步,即所謂”拋磚引玉”,然而很多時候只是例題繼例題,解后并沒有引導學生進行反思,因而學生的學習也就停留在例題表層,出現(xiàn)上述情況也就不奇怪了?!睂W而不思則罔”,”罔”即迷惑而沒有所得,把其意思引申一下,我們也就不難理解例題教學為什么要進行解后反思了。事實上,解后反思是一個知識小結、方法提煉的過程;是一個吸取教訓、逐步提高的過程;是一個收獲希望的過程。從這個角度上講,例題教學的解后反思應該成為例題教學的一個重要內容。本文擬從以下三個方面作些探究。
一、在解題的方法規(guī)律處反思
例題千萬道,解后拋九霄”難以達到提高解題能力、發(fā)展思維的目的。善于作解題后的反思、方法的歸類、規(guī)律的小結和技巧的揣摩,再進一步作一題多變,一題多問,一題多解,挖掘例題的深度和廣度,擴大例題的輻射面,無疑對能力的提高和思維的發(fā)展是大有裨益的。
通過例題的層層變式,學生對三邊關系定理的認識又深了一步,有利于培養(yǎng)學生從特殊到一般,從具體到抽象地分析問題、解決問題;通過例題解法多變的教學則有利于幫助學生形成思維定勢,而又打破思維定勢;有利于培養(yǎng)思維的變通性和靈活性。
二,在學生易錯處反思
學生的知識背景、思維方式、情感體驗往往和成人不同,而其表達方式可能又不準確,這就難免有”錯”。例題教學若能從此切入,進行解后反思,則往往能找到”病根”,進而對癥下藥,常能收到事半功倍的效果!
因為整個的解題過程并非僅僅只是一個知識運用、技能訓練的過程,而是一個伴隨著交往、創(chuàng)造、追求和喜、怒、哀、樂的綜合過程,是學生整個內心世界的參與。其間他既品嘗了失敗的苦澀,又收獲了”山重水復疑無路,柳暗花明又一村”的喜悅,他可能是獨立思考所得,也有可能是通過合作協(xié)同解決,既體現(xiàn)了個人努力的價值,又無不折射出集體智慧的光芒。在此處引導學生進行解后反思,有利于培養(yǎng)學生積極的情感體驗和學習動機;有利于激勵學生的學習興趣,點燃學習的熱情,變被動學習為自主探究學習;還有利于鍛煉學生的學習毅力和意志品格。同時,在此過程中,學生獨立思考的學習習慣、合作意識和團隊精神均能得到很好的培養(yǎng)。
數(shù)學教育家弗賴登塔爾就指出:反思是數(shù)學活動的核心和動力。總之,解后的反思方法、規(guī)律得到了及時的小結歸納;解后的反思使我們撥開迷蒙,看清”廬山真面目”而逐漸成熟起來;在反思中學會了獨立思考,在反思中學會了傾聽,學會了交流、合作,學會了分享,體驗了學習的樂趣,交往的快慰。
八年級數(shù)學乘法公式教學反思總結篇四
今天我上了一節(jié)余角與補角的新課。我以為這個知識點很簡單,所以就忽略很多細節(jié)問題。雖然我準備的很充分,但是還是存在很多的問題。
首先,我利用實物三角板得出三角板的兩個銳角的和是90°,我就直接過渡到互余的定義。其實我指導老師給我的建議是得出兩個角和為90°后,例如∠1+∠2=90°,我就應該跟學生說:“∠1是∠2的余角,∠2是∠1的余角”這樣學生更加容易理解。說出這個之后,我才正確的敘述一次互余的定義。
我是利用通過教授互余的定義,然后讓學生自學得出互補的定義。學生基本能夠通過書本得出互補的定義出來。我把互余跟互補的定義教授完之后。我就出一組已知一個銳角,求它的余角跟補角的題目。我發(fā)現(xiàn)一開始只有小部分的同學會做,我就意識我之前都是在叫文字類的東西,都沒有把文字轉換為數(shù)學語言。我就馬上補救,我通過講兩個角和等于90°得到她們互余,就知道已知角∠α求它的補角就應該是90°—∠α,求它的補角就應該是180°—∠α。例如求角為5°的余角就是90°—5°=85°,它的補角就是18 0°—5°175°。我發(fā)現(xiàn)通過講授如果做題之后,她們基本所有的同學都掌握了這個知識點。
通過求已知銳角的余角、補角,引導學生得出一個銳角的補角比它的余角要大90°的結論。
我通過兩個題目來檢驗學生是否理解的這個結論我就出了下面兩道題:
1、一個角的余角是∠,它的補角是∠ 求∠ —∠=______°
2、如果一個角的補角是150°求這個角的余角=_________°
學生一下就得出了答案,我是低估了學生的能力。
總的來說,我覺得自己收獲很大。以后我會不斷改進自己的教案,爭取得到最好的效果。
八年級數(shù)學乘法公式教學反思總結篇五
(1) “分”與“合”是數(shù)的組成的兩個方面,是10以內數(shù)的加法和減法的重要基礎。大多數(shù)學生喜歡計算加法從“合”的角度求和,計算減法從“分”的角度求差。教材引導學生逐漸掌握“分”與“合”的關系。
① 教學4的組成,先認識“分”,再認識“合”,把“分”與“合”分開教學,便于逐個理解含義,初步感受它們是有聯(lián)系的。
② 教學5的組成,同時提出“分”與“合”的問題,引導學生從“分”立即說出“合”,使兩者成為有機聯(lián)系的整體。
③ 第33頁第1、2題,第36頁第1題,第37頁第1題,教學6、7、8、9、10各數(shù)的分解后,專題練習這些數(shù)的“合”。用“分”的知識回答“合”的問題,體會“分”與“合”是相互促進的,只要記住了“分”,就能說出“合”。
(2) 除2以外,3~10各數(shù)都有兩種或多種分解。把一個數(shù)的各種分解有序地依次排列是對稱的。如5的分解:
掌握這種對稱,能提高學習效率,減輕記憶負擔。教材引導學生逐步理解和應用這種對稱。
① 教學4的組成,雖然4分成3和1、2和2、1和3是對稱的,但考慮到初步教學數(shù)的組成,重點應放在理解“分”與“合”的意義和研究數(shù)的組成的學習活動上,暫時不揭示這種對稱。
② 教學5的組成,通過兩個學生在不同位置觀察5朵花擺成1朵和4朵的同一種分法,體會541和 514是一致的,實質上是一組分解的兩種表達。然后讓學生看著5朵花擺成2朵和3朵的圖,寫出這組分解的兩種表示。教材給一種表達畫上虛線框,讓學生明白它可以從另一種表達得到。
③ 教學6和7的組成,根據一幅圖寫出數(shù)的一組分解,虛線框里的表達直接從左邊得到。感受研究6、7的組成,只要進行三次操作就夠了,為提高8、9、10的組成的教學效率打下基礎。
④ 教學8、9、10的組成,通過“你還能想到什么”引導學生從這些數(shù)的一些分解說出另一些分解。體會較大數(shù)的組成,只要記住其中的一半,就記住了另一半。
八年級數(shù)學乘法公式教學反思總結篇六
“新課程標準”強調學生的“經歷,體驗和自主探索”,突出過程性目標,實現(xiàn) 教的轉變、學的轉變、課堂氣氛的轉變 。下面以《中心對稱》一課為例,進行反思。
一、關于概念的教學
中心對稱概念的引出。學生在初二上學期學習了軸對稱的有關知識,我設計先復習軸對稱概念和性質。本課在揭示中心對稱的概念和性質時,加強了和軸對稱的辨析,讓學生在類比和辨析中更好地掌握中心對稱這一概念,從而達到理想的效果。
二、教的轉變:本節(jié)課我把自己的角色從知識的傳授者轉變?yōu)閷W生學習的組織者、引導者、合作者與共同研究者。在引導學生畫中心對稱圖時,我只給出一個三角形,讓學生把對稱中心定在不同的位置。突出以學生為主體的要求。讓學生通過畫圖歸納出中心對稱的性質,達到激發(fā)學生自覺地探究數(shù)學問題,體驗發(fā)現(xiàn)的樂趣的目的。
三、學的轉變:學生的角色從學會轉變?yōu)闀W。本節(jié)課學生不是停留在學會課本知識的層面上,而是站在研究者的角度深入其境。讓學生設計上面的各種類型圖,學生自己去解答, 學生通過自主活動發(fā)現(xiàn)了規(guī)律,增強了學生自主學習的意識,增加了他們學習數(shù)學的信心。
四、課堂氛圍的轉變:整節(jié)課以 流暢、開放、合作、 隱 導 為基本特征,教師對學生的思維活動減少干預,教學過程呈現(xiàn)一種比較流暢的特征,整節(jié)課學生與學生、學生與教師之間以 對話 、 討論 為出發(fā)點,以互助、合作為手段,以解決問題為目的,讓學生在一個較為寬松的環(huán)境中自主選擇獲得成功的方向,判斷發(fā)現(xiàn)的價值。
五、重視知識與生活的聯(lián)系
數(shù)學的教學不僅要考慮數(shù)學自身的特點,更應遵循學生學習數(shù)學的心理規(guī)律,強調從學生已有的生活經驗出發(fā),讓學生親身經歷將實際問題抽象成數(shù)學模型,并進行解釋與應用的過程,進而使學生獲得對數(shù)學理解的同時,在思維能力情感態(tài)度與價值觀等多方面得到進步。 本節(jié)我設計如下聯(lián)系生活的題:利用中心對稱測量河寬
六、不足之處
1、軸對稱的概念強調不到位、不夠細致,尤其是對稱點的概念。給學生消化理解的時間太短。
2、沒講中心對稱與旋轉對稱的關系。
3、聯(lián)系生活的例子離學生經歷太遠,如舉測小口瓶子的內徑,能使學生親自動手就更好了。
八年級數(shù)學乘法公式教學反思總結篇七
1、心理素質方面
面對那么多聽課的教師,孩子們和往常一樣,積極的思考,大膽的表達自己不同的想法,看到孩子們的自信和飽滿的精神狀態(tài),我為他們高興。可是自己呢?一開始就自亂陣腳,看到學生在黑板上畫的40°角,腦子一熱,心里想:怎么和我讓他們嘗試畫的角度數(shù)一樣呢?其實第一次嘗試是讓畫30°角的,第二次嘗試才讓畫40°角,可當時一迷,也忘記了讓學生說說三角尺各個角的度數(shù),就讓學生先嘗試畫40°的了,第二次再畫30°的角,后來也讓學生復習了三角尺各個角的度數(shù),但是整個教學環(huán)節(jié)顯得亂了。
心理素質是人整體素質的重要組成部分。心理素質的好壞直接能影響一個人的生活質量和工作效率。多年來,只要有人聽課,特別是有領導在場,沒有一節(jié)課講的讓人滿意。每次講課之后就會痛很久,不過這次,我沒有痛的感覺,知道了自己的毛病在哪里,我很高興。
我總是對孩子們說:“你能行”“你是最棒的”“我相信你”,就這幾句話讓很多孩子自信起來,讓他們對自己的學習充滿了希望。我為什么不可以這樣勉勵自己呢?我真的相信,只要我堅持不懈的努力,各方面的素質都會提高,我的數(shù)學課一定能達到優(yōu)質、高效的效果。
2、問題設置方面
在課堂上,面對教師提的問題,孩子們不去積極的思考,或者出現(xiàn)孩子們的回答脫離了教學的核心,答非所問,那一定是教師所提的問題出現(xiàn)了問題。在《角的畫法》這節(jié)課中,我設置了這樣一個這樣的問題“用三角尺還能畫出那些角?”一個孩子說:“可以畫出銳角、直角、鈍角、平角、周角?!碑敃r我一聽,懵了,怎么這么回答啊,咋不是“30°、60°、90°、45°”呢?孩子們也在下面吵開了,有的說用三角尺不能畫周角,有的說可以畫周角。我當時也想不到用三角尺怎么拼出一個周角,就很奇怪的問孩子們怎么畫,孩子們肯定受到我表情的影響,陷入了沉默。最后只好對孩子們說,這個問題我們下去再說,就敷衍過去了。出現(xiàn)這個意外,就是我的問題針對性不強,不夠具體,結果出現(xiàn)了孩子們的回答不是預設的結果。如果這樣問:“用三角尺還可以直接畫出那些度數(shù)的角?”我想就不會節(jié)外生枝了。
課堂的提問一定要緊緊圍繞教學目標,針對教學內容的重點、難點設計,提出的問題要明確具體,才能使孩子們明確思維的方向。這些以前都知道,但僅僅是知道,沒有感悟,而今天課堂上的這個意外,讓我悟到了:課堂的提問也是一門學問,更是一門藝術。你問得好,問的巧,教學就有效,孩子們的思維也能得到發(fā)展,使孩子們變得聰明,反之,就會阻礙孩子們的發(fā)展。
3、課堂生成方面
課堂的生成可分為預設生成和非預設生成,非預設生成是指在課堂的師生互動中,學生提供的學習材料、學習的思維成果和學生開展操作獲得的結論等,是教師預先所沒有料到的;簡單地說,就是指教師預設之外而又有意義的學習生成。在《角的畫法》一課中,在畫完40°角,小組交流畫法之后,我讓學生匯報。有個孩子說了這樣一種畫法:先畫一個點,量角器的中心點與這個點重合,在0刻度線和40°的地方點上點,然后連線,畫出40°的角。他這種畫法結果是正確的,可是與教材中畫角的步驟不符合,雖然我當時表揚他是個愛思考的孩子,但卻不敢肯定孩子的畫法。后來在研討中,這也成為一個研討的焦點。有的教師認為這樣做也可以,有的教師認為這樣的畫法是不規(guī)范的。
課后我查閱了資料,又在網上請教了一些教師。最后認定:這樣畫角是可以的。只是我當時在課堂上沒有抓住時機,進行恰當?shù)奶幚?。如果我當時肯定孩子的畫法,并告訴孩子:“其實你這樣畫,和書上的畫法是一樣的,你先確定的第一個點是射線的端點,也就是角的頂點,對準0刻度線和40刻度的這兩個點確定了兩條射線,也就是角的兩條邊的位置。只是書上先畫了一條射線,而你是先通過點點,確定了射線的位置后,才畫射線的。這樣一分析,把孩子的思維和教材上的畫法做了一個對接,使孩子們在對角的認識上又有了更深刻的理解。
這個生成之所以處理的不到位,其實是教師在專業(yè)知識方面的欠缺。看來,要學習的東西還很多。
八年級數(shù)學乘法公式教學反思總結篇八
在教學《測量》時 ,我是這樣講的:
首先我先讓學生分組合作用自己的方法測量出十米的距離(在教室外),然后讓學生匯報測量方法;接著把學生按高矮分兩組手拉手看十米需要幾個學生,再讓學生走一走,看自己走十米需要幾步,最后讓學生說一說大約十米的物品。
在進行操場測量時,由于學校沒有操場,我讓學生先測量了一下學校院子的東西長度,然后讓學生試一試在一分鐘內走多少米,再 讓學生分組走四百米(學生不知道),告訴學生走四百米用的時間,然后讓學生估算一下標準操場的長度。
最后的作業(yè)讓學生完成在“做一做”中的3.
整堂課上的很累,一是學生有點亂,而是感覺教的有點死板,很機械,課堂氣氛不活躍。
這堂課的優(yōu)點:
教材與實地結合,學校沒有操場,怎么辦,這一部分占課堂近二分之一的時間。我將學校院子的長度作為操場,然后讓學生走一走,估計一下。這基本上能讓學生在印象中有一個標準操場的樣子。
自主學習。在本課中,因為需要學生動手的多,也因為老師的經驗不能代替學生的實踐,我讓學生分組來進行測量,親自動手做,教師只起指導作用,這樣,學生無拘無束,能調動學生的 學習積極性,也能提高學生的動手動腦能力,培養(yǎng)學生的合作能力。
不足:
測量操場沒有讓學生自己測,我在進行教學設計時,感到教材例題與習題矛盾,你都量了,還讓學生走什么,估算什么,所以就省略了這一環(huán)節(jié)。
事后,我感覺講這一課經驗太少,不知道到底怎樣才能輕松而又有效的上好這一課,因此,懇請同仁多加指導。
八年級數(shù)學乘法公式教學反思總結篇九
在我們走入新課程的這段時間,我對自己過去的教學思想和行為進行了反思,用新課程的理念,對曾經被視為經驗的觀點和做法進行了重新審視,現(xiàn)將在反思中得到的體會總結出來,以求與同行共勉。
一、教學中要轉換角色,改變已有的教學行為
(1)新課程要求教師由傳統(tǒng)的知識傳授者轉變?yōu)閷W生學習的組織者。
(2)教師應成為學生學習活動的引導者。
(3)教師應從“師道尊嚴”的架子中走出來,成為學生學習的參與者。
二、教學中要“用活”教材
三、教學中要尊重學生已有的知識與經驗
教學反思,或稱為“反思性教學”,是指教師在教學實踐中,批判地考察自我的主體行為表現(xiàn)及其行為依據,通過觀察、回顧、診斷、自我監(jiān)控等方式,或給予肯定、支持與強化,或給予否定、思索與修正,將“學會教學”與“學會學習”結合起來,從而努力提升教學實踐的合理性,提高教學效能的過程。教學反思被認為是“教師專業(yè)發(fā)展和自我成長的核心因素”。美國學者波斯納認為,沒有反思的經驗是狹隘的經驗,至多只能形成膚淺的知識。只有經過反思,教師的經驗方能上升到一定的高度,并對后繼行為產生影響。他提出了教師成長的公式:教師的成長=經驗+反思。那么,我們應如何在教學反思中學會教學呢?
1、傳統(tǒng)數(shù)學教學的反思
傳統(tǒng)數(shù)學教學實踐中,由于對教育目的價值取向的偏差,往往僅把學生當作教育的對象和客體,忽視學生的自主意識、創(chuàng)新精神的培養(yǎng),忽視學生主體性的發(fā)展,主要表現(xiàn)在:(1)重教而不重學生,如講細講透、面面俱到、滴水不漏的教學表演,往往就被認為是一節(jié)好課;(2)重管教而不重自覺,如教學過程中不重視學生的自我調控、獨立判斷;(3)重統(tǒng)一而不重多樣,如學生幾乎沒有可能自由選擇學習內容或自行規(guī)劃、安排學習進程,教學要求強求一律,學生間的個性差異得不到承認;(4)重傳授而不重探索,如將學生視為承受知識的容器,教學中一味填鴨灌輸、包辦代替;(5)重繼承而不重創(chuàng)新;(6)重結果而不重過程;(7)重考試成績而不重全面發(fā)展……這一切不僅造成了學生學習興趣下降,學業(yè)負擔加重,探索精神萎縮,而且極大地妨礙了學生主體性發(fā)展,影響了教育方針的全面貫徹落實,也必將影響到社會發(fā)展。
培養(yǎng)、發(fā)展人的主體性,是教育改革的一個主題,也是深化改革的一個重要突破口。數(shù)學教學不僅要使學生“接受”、“適應”已有的和既定的一切,也要使他們具有改造和發(fā)展現(xiàn)存社會及現(xiàn)存自我的能力。弘揚和培植學生的主體性,在教育教學活動中突出學生的主體地位,強調教學民主,強調自我激勵,強調學會學習,將使學生獲益終身。
2、數(shù)學學習中的“思”與“問”
很多學生認為數(shù)學抽象,難學,但又一時找不到好的學習方法,有的同學認為,只要上課認真聽講、課下仔細看書,平時多做些題就能把數(shù)學學好,他們也試著這樣去做了,可是效果并不理想,那是為什么呢?我想忽視了“思”與“問”在學習中的重要作用。
孔子曰:“學而不思則罔,思而不學則殆?!边@句話充分指出了學與思的辨證關系。告誡大家在學習中要重視積極思考,才會有收獲。數(shù)學課程并不是記住幾個概念,幾條結論就能解決很多問題,僅僅靠死記硬背,生搬硬套是行不通的。不是看懂的,也不是聽懂的,是想懂的。數(shù)學內容來源于自然現(xiàn)象及生活實踐,是研究自然規(guī)律的;題型靈活多變,必須深入理解,弄清概念規(guī)律的來龍去脈,這需要有較好的理解能力、觀察能力、邏輯思維能力,空間想象能力、分析問題的能力、利用數(shù)學知識處理問題的能力等。
學習的成功與否,關鍵在于能否正確的處理好“思”與“問”的關系??梢哉f沒有思考就沒有進步,沒有問題就沒有提高。在學習的過程中,應注意積極地思考,善于提出問題,解決問題,在“思”中進步,在“問”中升華。