環(huán)境保護(hù)是當(dāng)前全球關(guān)注的熱點(diǎn)問(wèn)題之一,我們應(yīng)該積極采取措施。善于觀察生活和思考問(wèn)題,可以為寫(xiě)作提供豐富的素材和靈感。請(qǐng)閱讀以下總結(jié)范文,希望能給您寫(xiě)總結(jié)提供一些思路和靈感。
數(shù)學(xué)建模論文篇一
摘要:數(shù)學(xué)建模課堂中學(xué)生的自主探究、合作學(xué)習(xí)與教師的科學(xué)引導(dǎo)并不矛盾而是相輔相成的。只有在教師科學(xué)、適時(shí)、適當(dāng)?shù)匾龑?dǎo)下才能更好地突出學(xué)生的主體地位,從而打造出自主探究、合作學(xué)習(xí)、愉悅發(fā)展的高效數(shù)學(xué)建模課堂。
關(guān)鍵詞:數(shù)學(xué)建模;教師
一、新課的引入需要發(fā)揮教師的作用
教師在數(shù)學(xué)建模課堂上的引導(dǎo)作用首先體現(xiàn)在教師對(duì)新課的引入上。教師一段精彩的導(dǎo)入會(huì)點(diǎn)燃學(xué)生學(xué)習(xí)的熱情、激發(fā)學(xué)生的學(xué)習(xí)興趣、喚起學(xué)生的好奇心,能把學(xué)生的注意力迅速集中到要學(xué)的知識(shí)上來(lái)。這對(duì)提高教學(xué)質(zhì)量、提高學(xué)生的學(xué)習(xí)效果起著不可估量的作用。同時(shí),新課前的導(dǎo)入環(huán)節(jié)是對(duì)學(xué)生進(jìn)行情感教育的最佳時(shí)刻。學(xué)生只有在教師的引導(dǎo)下才能夠體會(huì)到數(shù)學(xué)建模的價(jià)值、增強(qiáng)學(xué)好數(shù)學(xué)建模的信心。俗話說(shuō):“好的開(kāi)始是成功的一半?!睌?shù)學(xué)建模課堂也是這樣。因此,在新課引入時(shí)要充分發(fā)揮教師的作用。
二、在教學(xué)任務(wù)的設(shè)計(jì)上需要發(fā)揮教師的作用
數(shù)學(xué)建模課堂一般應(yīng)采用任務(wù)型教學(xué)模式,是讓學(xué)生通過(guò)自主探究、合作學(xué)習(xí)、交流展示的方式完成一系列學(xué)習(xí)任務(wù)來(lái)達(dá)到特定的教學(xué)目標(biāo)和學(xué)習(xí)目標(biāo)。學(xué)生在課堂中的主體作用能否得到有效發(fā)揮取決于教師對(duì)問(wèn)題設(shè)計(jì)質(zhì)量的高低。教師應(yīng)通過(guò)設(shè)計(jì)一系列高質(zhì)量的問(wèn)題把復(fù)雜的數(shù)學(xué)建模問(wèn)題分解成若干簡(jiǎn)單問(wèn)題來(lái)引導(dǎo)學(xué)生更好地發(fā)揮其主動(dòng)性。學(xué)生也只有在這些問(wèn)題的正確引導(dǎo)下才能突破難點(diǎn)并向著學(xué)習(xí)目標(biāo)努力,有效防止學(xué)生思考、探究、交流的內(nèi)容偏離學(xué)習(xí)目標(biāo)等現(xiàn)象的出現(xiàn)。這些任務(wù)的制訂需要充分發(fā)揮教師的作用。
三、在新舊知識(shí)的聯(lián)系點(diǎn)上需要發(fā)揮教師的作用
建構(gòu)主義強(qiáng)調(diào)新知識(shí)是在學(xué)生已有知識(shí)的基礎(chǔ)上通過(guò)學(xué)生自身有意義的建構(gòu)獲得的。筆者認(rèn)為,學(xué)生自主建構(gòu)知識(shí)應(yīng)在教師的科學(xué)引導(dǎo)下進(jìn)行。尤其是對(duì)于數(shù)學(xué)建模這樣高難度的知識(shí)更是這樣。失去了教師的科學(xué)引導(dǎo),學(xué)生易產(chǎn)生疲倦感,久而久之會(huì)喪失學(xué)習(xí)數(shù)學(xué)建模的興趣和信心。因此,在新舊知識(shí)聯(lián)系點(diǎn)上應(yīng)發(fā)揮教師的作用。教師應(yīng)在準(zhǔn)確掌握教學(xué)目標(biāo)、難點(diǎn)的基礎(chǔ)上,充分考慮學(xué)生的認(rèn)知能力、習(xí)慣、思維方式,通過(guò)有針對(duì)性的具體問(wèn)題喚起學(xué)生對(duì)舊知識(shí)的回憶,再通過(guò)啟發(fā)性問(wèn)題引導(dǎo)學(xué)生去發(fā)現(xiàn)新知識(shí),從而實(shí)現(xiàn)溫故知新的目的。在教師引領(lǐng)下學(xué)生自主建構(gòu)知識(shí)可以使學(xué)生少走彎路,從而使學(xué)生更加高效地自主探究、掌握新知識(shí)。
四、在教學(xué)重點(diǎn)、難點(diǎn)上需要教師的引導(dǎo)
教學(xué)的重點(diǎn)、難點(diǎn)是每一節(jié)課的核心和主線,只有準(zhǔn)確把握了重點(diǎn)、突破了難點(diǎn)才能更好地掌握本節(jié)課的內(nèi)容。在強(qiáng)調(diào)學(xué)生自主探究、小組合作學(xué)習(xí)的課堂教學(xué)模式中,數(shù)學(xué)建模教材的重點(diǎn)、難點(diǎn)學(xué)生往往把握不準(zhǔn)、難以突破。這就需要教師科學(xué)引導(dǎo)學(xué)生主動(dòng)去發(fā)現(xiàn)重點(diǎn)、突破難點(diǎn)。教師引導(dǎo)學(xué)生發(fā)現(xiàn)重點(diǎn)、突破難點(diǎn)并不是讓教師直接告訴學(xué)生本節(jié)課的重點(diǎn)是什么、怎樣突破難點(diǎn),而是通過(guò)具體問(wèn)題的引導(dǎo)讓學(xué)生自己找到重點(diǎn)、并通過(guò)學(xué)生自己的思考、討論解決疑難問(wèn)題。學(xué)生在教師的引導(dǎo)下通過(guò)自己的努力、討論解決了疑難后,學(xué)生會(huì)非常興奮,從而會(huì)越來(lái)越喜歡數(shù)學(xué)建模課。相反,在沒(méi)有教師引導(dǎo)的數(shù)學(xué)建模課堂中,學(xué)生經(jīng)常被困難嚇倒,從而對(duì)數(shù)學(xué)建模課產(chǎn)生畏懼感。由此可見(jiàn),教師對(duì)學(xué)生的科學(xué)引導(dǎo)是學(xué)生學(xué)好數(shù)學(xué)建模必不可少的環(huán)節(jié)。在以學(xué)生為本、注重學(xué)生全面發(fā)展、提倡課堂中突出學(xué)生主體地位的背景下,教師的引導(dǎo)仍是數(shù)學(xué)建模課堂中不可缺失的要素。數(shù)學(xué)建模課堂中學(xué)生的自主探究、合作學(xué)習(xí)與教師的科學(xué)引導(dǎo)并不矛盾而是相輔相成的。只有在教師科學(xué)、適時(shí)、適當(dāng)?shù)匾龑?dǎo)下才能更好地突出學(xué)生的主體地位,從而打造出自主探究、合作學(xué)習(xí)、愉悅發(fā)展的高效數(shù)學(xué)建模課堂。
數(shù)學(xué)建模論文篇二
使學(xué)生的綜合應(yīng)用能力、實(shí)踐創(chuàng)新能力和綜合應(yīng)用素質(zhì)等多方面均能得到提升和發(fā)展。
對(duì)于醫(yī)學(xué)專(zhuān)業(yè)的學(xué)生來(lái)說(shuō),在校所學(xué)的數(shù)學(xué)基礎(chǔ)理論課程比較有限,并且學(xué)生對(duì)純粹的數(shù)學(xué)知識(shí)與復(fù)雜的理論推導(dǎo)已經(jīng)極為厭倦,如果數(shù)學(xué)建模還是以傳統(tǒng)的“灌輸式”和教師“主導(dǎo)型”為主、簡(jiǎn)單的應(yīng)用案例為主要教學(xué)內(nèi)容的話,其結(jié)果勢(shì)必會(huì)使學(xué)生有一種再講數(shù)學(xué)課和做應(yīng)用題的感覺(jué),既不能很好地激發(fā)學(xué)生的學(xué)習(xí)興趣,也不能體現(xiàn)數(shù)學(xué)建模的思想方法和本質(zhì)特色。
因此,如何使學(xué)生擺脫這種尷尬的現(xiàn)狀已成為我們教學(xué)的一大難點(diǎn)。針對(duì)這種情況,在教學(xué)模式上,我們大膽嘗試研究型教學(xué)模式,即采用“從實(shí)踐中來(lái),到實(shí)踐中去”的教學(xué)理念。一方面,從最現(xiàn)實(shí)、最熱門(mén)的醫(yī)學(xué)話題出發(fā),從學(xué)生最感興趣的.問(wèn)題入手,激發(fā)學(xué)生的學(xué)習(xí)興趣和進(jìn)一步學(xué)習(xí)的主動(dòng)性,使他們從一開(kāi)始就能進(jìn)入到學(xué)習(xí)的角色中去;另一方面,通過(guò)開(kāi)展多種方式的實(shí)踐教學(xué)活動(dòng),使學(xué)生在實(shí)踐中掌握數(shù)學(xué)建模的常用方法和基本技能,忽略繁瑣的數(shù)學(xué)推導(dǎo)過(guò)程,讓學(xué)生體會(huì)發(fā)現(xiàn)問(wèn)題和思考問(wèn)題的過(guò)程,培養(yǎng)學(xué)生解決問(wèn)題的創(chuàng)新能力。
近些年來(lái),我們開(kāi)設(shè)的醫(yī)藥數(shù)學(xué)建模課受到了學(xué)生的一致好評(píng),其關(guān)鍵之處在于我們一改傳統(tǒng)的教學(xué)模式,通過(guò)組織數(shù)學(xué)建模興趣研討班,讓每位同學(xué)都能充分地參與到研究中去并且使每位學(xué)生都有發(fā)言的機(jī)會(huì)。這些舉措旨在進(jìn)一步激發(fā)學(xué)生的創(chuàng)新意識(shí),提高學(xué)生的數(shù)學(xué)建模實(shí)踐能力。研討班面向全校各類(lèi)醫(yī)學(xué)專(zhuān)業(yè)的學(xué)生,并以三人為單位,劃分成若干個(gè)組,通過(guò)專(zhuān)題研討的形式開(kāi)展活動(dòng)。實(shí)踐證明:通過(guò)這種研討過(guò)程,學(xué)生不僅對(duì)所學(xué)的醫(yī)學(xué)知識(shí)有了更深刻的理解與認(rèn)識(shí),在文獻(xiàn)資料查閱、計(jì)算機(jī)編程、語(yǔ)言表達(dá)能力等諸多方面也都有了顯著的提高。通過(guò)這個(gè)過(guò)程的學(xué)習(xí),為學(xué)生今后從事醫(yī)學(xué)科研工作打下了良好的基礎(chǔ)。
為了有效的培養(yǎng)學(xué)生綜合應(yīng)用能力和深層次學(xué)習(xí)的習(xí)慣與意識(shí),我們?cè)诮虒W(xué)方法上一改往日的“講透,講懂”的方法,忽略純理論的繁瑣推導(dǎo),突出知識(shí)的應(yīng)用思想和應(yīng)用意識(shí),讓學(xué)生帶著問(wèn)題上課,嘗試在解決問(wèn)題中與教師進(jìn)行交流,下課帶著問(wèn)題回去。
在課堂教學(xué)中,重點(diǎn)講解發(fā)現(xiàn)問(wèn)題和解決問(wèn)題的方法與技巧。通過(guò)課前作業(yè),引導(dǎo)學(xué)生自我發(fā)現(xiàn)問(wèn)題;通過(guò)課堂講解和研討,引導(dǎo)學(xué)生解決問(wèn)題;通過(guò)課后作業(yè),總結(jié)和鞏固所學(xué)知識(shí),學(xué)習(xí)應(yīng)用與拓展知識(shí)。這種完全以學(xué)生為主,教師為輔的做法,有利于培養(yǎng)學(xué)生樹(shù)立勇于探索求知的信心和探索新知識(shí)的能力與意識(shí),提高學(xué)生的創(chuàng)新能力和敏銳的洞察力及想象力,從而提升學(xué)生的綜合應(yīng)用素質(zhì)。
在現(xiàn)實(shí)生活中的實(shí)際問(wèn)題是比較復(fù)雜的,往往單一的方法是難以解決的,通常是需要多種方法的綜合應(yīng)用方能解決。
因此,以實(shí)際問(wèn)題驅(qū)動(dòng)的教學(xué)模式,主要是引導(dǎo)學(xué)生如何將復(fù)雜的實(shí)際問(wèn)題分解為一系列簡(jiǎn)單的小問(wèn)題,在解決每一個(gè)小問(wèn)題的過(guò)程中,讓學(xué)生學(xué)習(xí)并掌握相關(guān)的數(shù)學(xué)知識(shí)與方法。這種在應(yīng)用中學(xué)習(xí)的教學(xué)方法,在很大程度上解決了學(xué)生普遍存在的“學(xué)數(shù)學(xué)有什么用、學(xué)了數(shù)學(xué)不知怎么用”的困惑。
在整個(gè)教學(xué)過(guò)程中,貫穿以學(xué)生為主體,通過(guò)案例分析引導(dǎo)學(xué)生的思維方法,針對(duì)一個(gè)案例的解決過(guò)程和方法,要求實(shí)現(xiàn)舉一反三,促使學(xué)生對(duì)所掌握的知識(shí)進(jìn)行重組再現(xiàn)和優(yōu)化構(gòu)建,讓學(xué)生在學(xué)習(xí)和問(wèn)題的解決中學(xué)會(huì)不斷地總結(jié)與歸納,用成功的方法再去演繹解決新的問(wèn)題,通過(guò)不斷地歸納演繹、對(duì)比分析、總結(jié)經(jīng)驗(yàn)、彌補(bǔ)不足,進(jìn)一步學(xué)習(xí)相關(guān)知識(shí)和方法,再進(jìn)行實(shí)踐,從而不斷增強(qiáng)自身的綜合應(yīng)用能力和素質(zhì)。
隨著醫(yī)學(xué)院校教育理念的轉(zhuǎn)變以及教育體制改革的深入,對(duì)培養(yǎng)適應(yīng)科學(xué)技術(shù)迅速發(fā)展的創(chuàng)新型醫(yī)學(xué)人才提出了更高的要求。如何培養(yǎng)出具有創(chuàng)新能力、綜合素質(zhì)高的專(zhuān)業(yè)人才已成為亟待解決的問(wèn)題之一。本文探討了醫(yī)藥數(shù)學(xué)建模課程的開(kāi)設(shè)對(duì)培養(yǎng)大學(xué)生實(shí)踐創(chuàng)新能力的幾點(diǎn)做法。教學(xué)實(shí)踐證明:數(shù)學(xué)建模課充分鍛煉了學(xué)生的各項(xiàng)能力,是提高醫(yī)學(xué)專(zhuān)業(yè)學(xué)生綜合應(yīng)用素質(zhì)行之有效的方法。
數(shù)學(xué)建模論文篇三
對(duì)于高職院校的學(xué)生來(lái)講,數(shù)學(xué)在其教學(xué)過(guò)程中起著基礎(chǔ)性的作用,對(duì)于學(xué)生后續(xù)的學(xué)習(xí)相當(dāng)關(guān)鍵。但是從現(xiàn)階段高職院校數(shù)學(xué)教學(xué)的基本情況來(lái)看,數(shù)學(xué)教師的教學(xué)方法以及教學(xué)策略都相當(dāng)落后,對(duì)于學(xué)生數(shù)學(xué)興趣的提升造成了不同程度的影響。在這樣的背景下,相關(guān)專(zhuān)家提出了數(shù)學(xué)建模的方式,希望以此提升高職院校高等數(shù)學(xué)的教學(xué)效率。本文結(jié)合數(shù)學(xué)建模在高職高專(zhuān)人才培養(yǎng)當(dāng)中的意義和作用入手,對(duì)于其中的應(yīng)用策略進(jìn)行全面的分析,希望為相關(guān)單位提供一個(gè)全面的參考。
數(shù)學(xué)建模;思想;高等教學(xué)
隨著我國(guó)社會(huì)的發(fā)展,經(jīng)濟(jì)產(chǎn)業(yè)結(jié)構(gòu)日益升級(jí),因此高等院校的人才需求日益擴(kuò)大,對(duì)于高職教育的發(fā)展提供了前所未有的契機(jī)。在這樣的背景下,從數(shù)學(xué)建模入手,將其思想融入到高等教育的數(shù)學(xué)教學(xué)當(dāng)中,對(duì)于其中的策略和方法進(jìn)行全面的研究應(yīng)該是一項(xiàng)具有普遍現(xiàn)實(shí)意義的工作。
從近些年的發(fā)展來(lái)看,參加過(guò)數(shù)學(xué)競(jìng)賽的學(xué)生在科研能力等方面都具有比其他同學(xué)更強(qiáng)的優(yōu)勢(shì),因此數(shù)學(xué)建模在提升學(xué)生創(chuàng)新能力、提高學(xué)生知識(shí)水平以及調(diào)動(dòng)學(xué)生的.學(xué)習(xí)興趣都具有十分重要的意義。比如在解決實(shí)際問(wèn)題的時(shí)候,數(shù)學(xué)建模通過(guò)利用各種技巧,可以使得學(xué)生分析問(wèn)題、創(chuàng)造能力得以全面的提升,進(jìn)而使得學(xué)生在摒棄原始思考問(wèn)題方式的基礎(chǔ)上,敢于向傳統(tǒng)的知識(shí)發(fā)出挑戰(zhàn),對(duì)于學(xué)生的綜合能力的全面提升相當(dāng)關(guān)鍵。其次,數(shù)學(xué)知識(shí)本就源于生活,因此在建模的基礎(chǔ)上學(xué)生就可以帶著問(wèn)題去思考,這對(duì)于數(shù)學(xué)知識(shí)整體性的發(fā)揮以及解決問(wèn)題能力的提升都具有十分重要的意義。最后,面對(duì)傳統(tǒng)數(shù)學(xué)的解決方式,很多學(xué)生望而生畏,因此主動(dòng)分析問(wèn)題的欲望就會(huì)受到遏制。在這樣的背景下,通過(guò)數(shù)學(xué)建模方式,學(xué)生會(huì)發(fā)現(xiàn)數(shù)學(xué)方法的靈活性,進(jìn)而使得他們解決問(wèn)題的能力得以全面的提升。
3.1制定切實(shí)可行的教學(xué)大綱,從而使得教學(xué)進(jìn)度得以保障。教學(xué)大綱在高職教學(xué)當(dāng)中起著十分重要的作用,這對(duì)于教學(xué)內(nèi)容的合理性以及提升學(xué)生學(xué)習(xí)的針對(duì)性都具有十分重要的意義[1]。比如在教學(xué)高等數(shù)學(xué)(一)的選修模塊時(shí),教學(xué)大綱的制定應(yīng)該結(jié)合學(xué)生的專(zhuān)業(yè),從而使得學(xué)生的數(shù)學(xué)學(xué)習(xí)真正取得實(shí)效。比如可以為理工類(lèi)的學(xué)生選擇無(wú)窮級(jí)數(shù)以及傅里葉變換的內(nèi)容;機(jī)械類(lèi)的學(xué)生選擇線性代數(shù)以及解析幾何作為教學(xué)內(nèi)容,從而使得學(xué)生的綜合能力得以全面的提升。3.2開(kāi)展“三段式”的教學(xué)模式。數(shù)學(xué)建模在以解決實(shí)際問(wèn)題為核心的過(guò)程中,使得學(xué)生分析問(wèn)題以及組織問(wèn)題的能力得以全面的提升,這種方式的本質(zhì)為素質(zhì)教育,因此不能和現(xiàn)行的其他教學(xué)模式分割開(kāi)來(lái),這就需要相關(guān)部門(mén)開(kāi)展“三段式”的教學(xué)模式,使得學(xué)生的數(shù)學(xué)興趣得以全面的提升。其中,第一段需要還原數(shù)學(xué)知識(shí)的原創(chuàng)過(guò)程,使得學(xué)生明確數(shù)學(xué)知識(shí)的產(chǎn)生過(guò)程,進(jìn)而讓學(xué)生從生活案例當(dāng)中發(fā)現(xiàn)數(shù)學(xué)的價(jià)值,比如知道極限是由人影的長(zhǎng)度變化引起的,導(dǎo)數(shù)是由于駕車(chē)的速度引入的,使得學(xué)生發(fā)現(xiàn)知識(shí)的價(jià)值,進(jìn)而就會(huì)大大提升自己的學(xué)習(xí)興趣和探究意識(shí)。第二段:講解數(shù)學(xué)知識(shí)。數(shù)學(xué)建模是在實(shí)際問(wèn)題當(dāng)中引入的,因此要通過(guò)具體數(shù)學(xué)知識(shí)的講解使得學(xué)生明確數(shù)學(xué)建模的真正價(jià)值,比如在講解微積分的過(guò)程中,可以以“極限-微分-積分”為主線,使得學(xué)生對(duì)于數(shù)學(xué)的分析能力真正得以提升[2]。然后在為學(xué)生積極引入大量數(shù)學(xué)圖表的基礎(chǔ)上,為增強(qiáng)學(xué)生的感性認(rèn)識(shí),進(jìn)而提升學(xué)生的綜合能力奠定堅(jiān)實(shí)的基礎(chǔ)。第三段:數(shù)學(xué)知識(shí)的運(yùn)用。隨著社會(huì)的發(fā)展,數(shù)學(xué)的應(yīng)用在各行各業(yè)都發(fā)揮出巨大的作用,因此對(duì)于高等數(shù)學(xué)在實(shí)際生活當(dāng)中發(fā)揮出來(lái)的作用進(jìn)行全面的探究是實(shí)現(xiàn)這種知識(shí)價(jià)值的真正途徑。在這樣的背景下,高等數(shù)學(xué)教師要將每個(gè)知識(shí)點(diǎn)的運(yùn)用真正灌輸給學(xué)生,比如指數(shù)增長(zhǎng)在銀行計(jì)息當(dāng)中的應(yīng)用、定積分在學(xué)習(xí)曲線當(dāng)中的應(yīng)用、再生資源在數(shù)學(xué)開(kāi)發(fā)以及管理當(dāng)中的應(yīng)用等等。從而使得學(xué)生數(shù)學(xué)學(xué)習(xí)中的創(chuàng)新意識(shí)以及應(yīng)用能力得以全面的提升。3.3開(kāi)設(shè)數(shù)學(xué)實(shí)驗(yàn),提升學(xué)生的綜合素質(zhì)。數(shù)學(xué)建模為學(xué)生提供了一種真正的“數(shù)學(xué)實(shí)驗(yàn)”,在這種實(shí)驗(yàn)的過(guò)程中,學(xué)生對(duì)于數(shù)學(xué)知識(shí)的發(fā)展以及由來(lái)過(guò)程都會(huì)得到進(jìn)行全面的考慮,這對(duì)于他們數(shù)學(xué)探索意識(shí)的提升具有十分重要的意義。另外,在計(jì)算機(jī)輔助實(shí)驗(yàn)的過(guò)程中,學(xué)生的動(dòng)腦能力也會(huì)得到全面的提升,這對(duì)于學(xué)生主動(dòng)的學(xué)習(xí)數(shù)學(xué)相當(dāng)關(guān)鍵。因此在教學(xué)過(guò)程中,教師要積極利用這種方式對(duì)于學(xué)生進(jìn)行全面的培養(yǎng)。
總之,隨著我國(guó)經(jīng)濟(jì)水平的不斷提升,社會(huì)對(duì)于高職院校的重視力度日益提升,因此對(duì)于高職院校當(dāng)中數(shù)學(xué)建模思想在高等數(shù)學(xué)教學(xué)當(dāng)中的應(yīng)用進(jìn)行全面的分析是實(shí)現(xiàn)學(xué)生綜合素質(zhì)得以全面提升的關(guān)鍵措施,這對(duì)于學(xué)生的長(zhǎng)遠(yuǎn)發(fā)展也相當(dāng)關(guān)鍵,相關(guān)教育工作者要加大在這方面的研究力度,力求將高職院校的學(xué)生培養(yǎng)成為新時(shí)代所需要的人才。
[1]吳健輝,黃志堅(jiān),汪龍虎.對(duì)數(shù)學(xué)建模思想融入高等數(shù)學(xué)教學(xué)中的探討[j].景德鎮(zhèn)高專(zhuān)學(xué)報(bào),20xx,(4).
[2]張卓飛.將數(shù)學(xué)建模思想融入大學(xué)數(shù)學(xué)教學(xué)的探討[j].湘潭師范學(xué)院學(xué)報(bào)(自然科學(xué)版),20xx,(1).
數(shù)學(xué)建模論文篇四
數(shù)學(xué),源于人們對(duì)生產(chǎn)與生活實(shí)際問(wèn)題,抽象出的數(shù)量關(guān)系與空間結(jié)構(gòu)發(fā)展而成的.近年來(lái),信息技術(shù)飛速發(fā)展,推動(dòng)了應(yīng)用數(shù)學(xué)的發(fā)展,使數(shù)學(xué)日益滲透到社會(huì)各個(gè)領(lǐng)域.中考實(shí)際應(yīng)用題目更貼近日常生活,具有時(shí)代性、靈活性,涉及的模型有方程、函數(shù)、不等式、統(tǒng)計(jì)、幾何等模型.數(shù)學(xué)課程標(biāo)準(zhǔn)指出,教師在教學(xué)中應(yīng)引導(dǎo)學(xué)生從實(shí)際背景中理清數(shù)學(xué)關(guān)系、把握變化規(guī)律,能從實(shí)際問(wèn)題中建立數(shù)學(xué)模型.教師要為學(xué)生創(chuàng)造用數(shù)學(xué)的氛圍,引導(dǎo)學(xué)生參與自主學(xué)習(xí)、自主探索、自主提問(wèn)、自主解決,體驗(yàn)做數(shù)學(xué)的過(guò)程,從而提高解決實(shí)際問(wèn)題的能力.
一、影響數(shù)學(xué)建模教學(xué)的成因探析
一是教師未能實(shí)現(xiàn)角色轉(zhuǎn)換.建模教學(xué)離不開(kāi)學(xué)生“做”數(shù)學(xué)的過(guò)程,因而教師在教學(xué)中要留有讓學(xué)生思考、想象的空間,讓他們自主選擇方法.然而部分教師對(duì)學(xué)生缺乏信任,由“引導(dǎo)者”變?yōu)椤肮噍斦摺?,將解題過(guò)程直接教給學(xué)生,影響了學(xué)生建模能力的提高.二是教師的專(zhuān)業(yè)素養(yǎng)有待提高.開(kāi)展建模教學(xué),需要教師具有一定的專(zhuān)業(yè)素養(yǎng),能駕馭課堂教學(xué),激發(fā)學(xué)生的興趣,啟發(fā)學(xué)生進(jìn)行思考,誘發(fā)學(xué)生進(jìn)行探索,但是部分教師專(zhuān)業(yè)素養(yǎng)有待提高,或認(rèn)為建模就是解應(yīng)用題,或重生活味輕數(shù)學(xué)味,或使討論活動(dòng)流于形式.三是學(xué)生的抽象能力較差.在建模教學(xué)中,教師須呈現(xiàn)生活中的實(shí)際問(wèn)題,其題目長(zhǎng)、信息量大、數(shù)據(jù)多,需要學(xué)生經(jīng)歷閱讀提取有用的信息,但是部分學(xué)生感悟能力差,不能明析已知與未知之間的關(guān)系,影響了學(xué)生成功建模.
二、數(shù)學(xué)建模教學(xué)的有效原則
1.自主探索原則.
學(xué)生長(zhǎng)期處于師講、生聽(tīng)的教學(xué)模式,淪為被動(dòng)接受知識(shí)的“容器”,難有創(chuàng)造的意識(shí).在教學(xué)中,教師要為學(xué)生創(chuàng)設(shè)輕松愉悅的探究氛圍,讓學(xué)生手腦并用,在探索、交流、操作中提高解決問(wèn)題的`能力.
2.因材施教原則.
教師要著眼于學(xué)生原有的認(rèn)知結(jié)構(gòu),要貼近學(xué)生的最近發(fā)展區(qū),引導(dǎo)他們從舊知的角度思考,找出問(wèn)題的解決方法。
3.可接受性原則.
數(shù)學(xué)建模內(nèi)容的設(shè)計(jì),要符合學(xué)生的年齡特點(diǎn)和認(rèn)知能力,能讓學(xué)生理解所探究的內(nèi)容.若設(shè)計(jì)的問(wèn)題不切實(shí)際,往往會(huì)扼殺學(xué)生的興趣,教師要密切聯(lián)系教學(xué)內(nèi)容、生活實(shí)際,讓學(xué)生有能力解決問(wèn)題.
數(shù)學(xué)建模論文篇五
大量的應(yīng)用型技能型人才,有效滿足了社會(huì)各行各業(yè)的用工需求。隨著國(guó)家對(duì)高職教育的重視和不斷投入,提高教育的教學(xué)質(zhì)量勢(shì)在必行[1]。數(shù)學(xué)建模的核心是以數(shù)學(xué)模型為基礎(chǔ)的實(shí)際運(yùn)用,鑒于數(shù)學(xué)建模的這種特點(diǎn),國(guó)內(nèi)高職數(shù)學(xué)教育逐步把數(shù)學(xué)建模理念融入到課題教學(xué)中,提高學(xué)生的應(yīng)用能力。以數(shù)學(xué)建模理念的告知書(shū)明確教學(xué)改革要求學(xué)生結(jié)合計(jì)算機(jī)技術(shù),靈活運(yùn)用數(shù)學(xué)的思想和方法獨(dú)立地分析和解決問(wèn)題,不僅能培養(yǎng)學(xué)生的探索精神和創(chuàng)新意識(shí),而且能培養(yǎng)學(xué)生團(tuán)結(jié)協(xié)作、不怕困難、求實(shí)嚴(yán)謹(jǐn)?shù)淖黠L(fēng)[2]。筆者結(jié)合自身的教學(xué)工作經(jīng)驗(yàn),對(duì)基于數(shù)學(xué)建模理念的高職數(shù)學(xué)教學(xué)改革進(jìn)行了探索,對(duì)教學(xué)實(shí)踐中出現(xiàn)的問(wèn)題進(jìn)行了分析梳理,以期為高職數(shù)學(xué)教學(xué)改革提供新思路,推動(dòng)高職數(shù)學(xué)教學(xué)水平的不斷提高,培養(yǎng)出具有良好數(shù)學(xué)素養(yǎng)和專(zhuān)業(yè)技能的新型高職人才。
近年來(lái),隨著國(guó)內(nèi)產(chǎn)業(yè)結(jié)構(gòu)的不斷調(diào)整,對(duì)于高等職業(yè)技術(shù)人才需求不斷增大,社會(huì)對(duì)高等職業(yè)技術(shù)教育寄予厚望。但是傳統(tǒng)的高職教育由于專(zhuān)業(yè)設(shè)置不合理,使用教材落后,實(shí)訓(xùn)實(shí)踐場(chǎng)地不足,培養(yǎng)出的學(xué)生動(dòng)手能力差、專(zhuān)業(yè)能力不足,面對(duì)社會(huì)發(fā)展的新形勢(shì),高職教育必須進(jìn)行教學(xué)改革,提高學(xué)生的職業(yè)能力和就業(yè)競(jìng)爭(zhēng)力。高職教育不同于普通本科教育,它有以下幾方面的特點(diǎn)。
1人才培養(yǎng)目標(biāo)不同
高職教育和本科教育人才培養(yǎng)目標(biāo)不同,高職教育是以技術(shù)應(yīng)用型高技能人才為培養(yǎng)目標(biāo),所有的教學(xué)課程設(shè)計(jì)和人才培養(yǎng)體系設(shè)計(jì)都是基于此目標(biāo)展開(kāi)的,高職教育主要是為了向產(chǎn)業(yè)發(fā)展提供生產(chǎn)、服務(wù)、管理等一線工作的高級(jí)技術(shù)應(yīng)用型人才,專(zhuān)業(yè)能力培養(yǎng)和目標(biāo)職業(yè)匹配度高,所以高職教育教學(xué)成果最直接的評(píng)價(jià)就是畢業(yè)生的就業(yè)競(jìng)爭(zhēng)力和上崗后的適應(yīng)能力。
2兩者的教學(xué)內(nèi)容不同
高職教育的教學(xué)重點(diǎn)是學(xué)生要掌握與實(shí)踐工作關(guān)系較為密切的業(yè)務(wù)處理能力、動(dòng)手能力與交流能力,把學(xué)生的職業(yè)能力建設(shè)列為教學(xué)重點(diǎn),課程設(shè)計(jì)專(zhuān)業(yè)性強(qiáng),一旦就業(yè)能為企業(yè)創(chuàng)造明顯的效益,高職教育各專(zhuān)業(yè)課程差別較大。
3生源情況不同
在當(dāng)前的教育教學(xué)體系下,高職教育的生源普遍較差,大多是沒(méi)有希望考上大學(xué),轉(zhuǎn)而進(jìn)入高職學(xué)習(xí),希望通過(guò)掌握一定的技術(shù)來(lái)實(shí)現(xiàn)就業(yè),所以高職學(xué)生的基礎(chǔ)知識(shí)普遍較差,學(xué)習(xí)興趣不高。數(shù)學(xué)建模給高職數(shù)學(xué)教學(xué)改革開(kāi)辟了新思路,數(shù)學(xué)建模為數(shù)學(xué)理論學(xué)習(xí)和工程實(shí)踐應(yīng)用搭建了橋梁,在工學(xué)結(jié)合的基本原則下,采取數(shù)學(xué)建模教學(xué)理念,培養(yǎng)學(xué)生的數(shù)學(xué)素養(yǎng)及動(dòng)手應(yīng)用能力是一個(gè)非常有效的手段[3]。
1數(shù)學(xué)建模的概念數(shù)學(xué)建模是將數(shù)學(xué)理論和現(xiàn)實(shí)問(wèn)題相結(jié)合的一門(mén)科學(xué),它將實(shí)際問(wèn)題抽象、歸納成為相應(yīng)的數(shù)學(xué)模型,在此基礎(chǔ)上應(yīng)用數(shù)學(xué)概念、數(shù)學(xué)定理、數(shù)學(xué)方法等手段研究處理實(shí)際問(wèn)題,從定性或者定理的角度給出科學(xué)的結(jié)果[4]。數(shù)學(xué)建模的發(fā)展為數(shù)學(xué)知識(shí)的應(yīng)用提供了途徑,對(duì)于現(xiàn)實(shí)中的特點(diǎn)問(wèn)題,可以用數(shù)學(xué)語(yǔ)言來(lái)描述其內(nèi)在規(guī)律和問(wèn)題,運(yùn)用數(shù)學(xué)研究的成果,結(jié)合計(jì)算機(jī)專(zhuān)業(yè)軟件,通過(guò)抽象、簡(jiǎn)化、假設(shè)、引進(jìn)變量等處理過(guò)程后,將實(shí)際問(wèn)題用數(shù)學(xué)方式表達(dá),轉(zhuǎn)化成為數(shù)學(xué)問(wèn)題,借助數(shù)學(xué)思想建立起數(shù)學(xué)模型,從而解決實(shí)際問(wèn)題。2基于數(shù)學(xué)建模思想的教學(xué)理念基于數(shù)學(xué)建模的這種學(xué)科特點(diǎn),可以把數(shù)學(xué)知識(shí)應(yīng)用化,因此,基于數(shù)學(xué)建模思想的教學(xué)理念可以概括為三個(gè)層次:首先,確立提高學(xué)生數(shù)學(xué)應(yīng)用能力為目標(biāo),以提高學(xué)生數(shù)學(xué)學(xué)習(xí)興趣為手段,以學(xué)習(xí)數(shù)學(xué)建模為途徑;其次,結(jié)合教學(xué)內(nèi)容,開(kāi)發(fā)相應(yīng)的數(shù)學(xué)建模案例,因地制宜、因生制宜,根據(jù)專(zhuān)業(yè)不同編寫(xiě)相應(yīng)的校本教材;最后,改進(jìn)教學(xué)方法,創(chuàng)新課堂教學(xué)模式,建立課外數(shù)學(xué)建模學(xué)習(xí)興趣小組,帶領(lǐng)學(xué)生進(jìn)行數(shù)學(xué)應(yīng)用實(shí)踐活動(dòng),鼓勵(lì)學(xué)生參加各種數(shù)學(xué)建模競(jìng)賽[5]。
傳統(tǒng)的數(shù)學(xué)教學(xué)模式以教師課堂講授為中心,學(xué)生只能被動(dòng)的接受,由于學(xué)生的基礎(chǔ)知識(shí)水平不同,掌握新知識(shí)的能力也不同,這種沒(méi)有區(qū)分的教學(xué)模式教學(xué)效果差,往往帶來(lái)的結(jié)果是造成基礎(chǔ)差的學(xué)生跟不上,對(duì)數(shù)學(xué)感興趣的學(xué)生失去興趣?;跀?shù)學(xué)建模理念的高職數(shù)學(xué)教學(xué)改革,是以學(xué)生數(shù)學(xué)應(yīng)用能力提高為目標(biāo),以數(shù)學(xué)學(xué)習(xí)興趣培養(yǎng)為出發(fā)點(diǎn),以數(shù)學(xué)建模為途徑,以教學(xué)方式改革為保障,打造高職數(shù)學(xué)教學(xué)改革新模式,全面提高高職教育應(yīng)用型人才培養(yǎng)水平。
1結(jié)合專(zhuān)業(yè)特色,突出數(shù)學(xué)教育的應(yīng)用性
數(shù)學(xué)作為高職教育的基礎(chǔ)性學(xué)科,理論性強(qiáng),體系性強(qiáng),對(duì)于基礎(chǔ)知識(shí)薄弱、學(xué)習(xí)興趣差的高職生來(lái)說(shuō)感覺(jué)難學(xué)、枯燥,這是因?yàn)楦呗殧?shù)學(xué)教育沒(méi)有教會(huì)學(xué)生如何在專(zhuān)業(yè)學(xué)習(xí)中和以后的工作中如何去用學(xué)到的數(shù)學(xué)知識(shí),學(xué)生感覺(jué)知識(shí)無(wú)用自然也就不會(huì)主動(dòng)去學(xué),之所以引入數(shù)學(xué)建模的思想就是為了讓學(xué)生利用學(xué)到的數(shù)學(xué)知識(shí)去解決實(shí)際問(wèn)題,讓學(xué)生認(rèn)識(shí)到數(shù)學(xué)不只是紙面上的寫(xiě)寫(xiě)算算,數(shù)學(xué)可以把實(shí)際問(wèn)題抽象化,變成數(shù)學(xué)問(wèn)題,利用數(shù)學(xué)的研究方法給實(shí)際問(wèn)題進(jìn)行科學(xué)的指導(dǎo),這樣高職數(shù)學(xué)教育就不再是課堂上的照本宣科,課下的演算作業(yè),將基礎(chǔ)數(shù)學(xué)教育和學(xué)生的專(zhuān)業(yè)教育相結(jié)合,帶來(lái)學(xué)生用數(shù)學(xué)解決專(zhuān)業(yè)問(wèn)題是大幅度提高學(xué)生專(zhuān)業(yè)能力的有效途徑。
2結(jié)合學(xué)生能力,因材施教、因地制宜
高職學(xué)校的生源不如普通高校,一般學(xué)習(xí)基礎(chǔ)較差,對(duì)于專(zhuān)業(yè)實(shí)訓(xùn)課并不明顯,但是在基礎(chǔ)學(xué)科教學(xué)過(guò)程特別突出,很多基礎(chǔ)知識(shí)掌握不牢,甚至一點(diǎn)印象都沒(méi)有,教師在上課時(shí)要充分考慮到這種情況,在課堂授課時(shí)給予實(shí)時(shí)的補(bǔ)充,以助于知識(shí)的過(guò)渡。因材施教是我國(guó)傳統(tǒng)的教育思想,在掌握學(xué)生知識(shí)水平的基礎(chǔ)上,教師要根據(jù)不同學(xué)習(xí)層次學(xué)生的具體情況,安排教學(xué)內(nèi)容和設(shè)置教學(xué)目標(biāo),對(duì)于基礎(chǔ)知識(shí)水平不高、學(xué)習(xí)興趣較差、學(xué)習(xí)能力較弱的學(xué)生要進(jìn)行課外輔導(dǎo)。高職基礎(chǔ)課教育是專(zhuān)業(yè)課學(xué)習(xí)的基礎(chǔ),授課教師要根據(jù)學(xué)生的專(zhuān)業(yè)學(xué)習(xí)情況和專(zhuān)業(yè)特點(diǎn),把遷移知識(shí)運(yùn)用能力在課堂上結(jié)合學(xué)生的專(zhuān)業(yè)背景進(jìn)行輔導(dǎo),高職數(shù)學(xué)教育不僅僅是為了學(xué)習(xí)數(shù)學(xué),更多的是發(fā)揮數(shù)學(xué)知識(shí)在其專(zhuān)業(yè)能力培養(yǎng)中的作用。
3培養(yǎng)學(xué)生學(xué)習(xí)興趣,促進(jìn)整體教學(xué)質(zhì)量提高
高職學(xué)校的學(xué)生學(xué)習(xí)興趣普遍不高,尤其是對(duì)于學(xué)了十幾年都感覺(jué)頭痛的數(shù)學(xué),要想提高數(shù)學(xué)的教學(xué)質(zhì)量,首先必須要培養(yǎng)學(xué)生的學(xué)習(xí)興趣,長(zhǎng)期以來(lái)學(xué)生在數(shù)學(xué)學(xué)習(xí)上已經(jīng)有了根深蒂固的認(rèn)識(shí),培養(yǎng)數(shù)學(xué)學(xué)習(xí)興趣很難,但是如果學(xué)生沒(méi)有學(xué)習(xí)興趣,教師授課內(nèi)容、授課方式改革都起不了太大的作用,學(xué)生對(duì)于數(shù)學(xué)學(xué)習(xí)興趣低由于低年級(jí)學(xué)習(xí)時(shí)受到的挫敗感,因此要讓學(xué)生建立學(xué)習(xí)數(shù)學(xué)的自信心,讓他們體驗(yàn)學(xué)會(huì)數(shù)學(xué)的成就感,這樣才能逐步培養(yǎng)他們的學(xué)習(xí)興趣。教師可以采取以點(diǎn)帶面的方式,先選擇有一定基礎(chǔ)的學(xué)生,再?gòu)娜空n程學(xué)習(xí)中發(fā)現(xiàn)表現(xiàn)優(yōu)秀的個(gè)體,組織參加建模競(jìng)賽,進(jìn)行單獨(dú)賽前加強(qiáng)指導(dǎo),用這些榜樣的力量提高全體同學(xué)的學(xué)習(xí)積極性。數(shù)學(xué)建模作為提高高職數(shù)學(xué)教育教學(xué)水平的“點(diǎn)”,能夠以其趣味性強(qiáng),帶動(dòng)學(xué)生的學(xué)習(xí)興趣,促進(jìn)高職數(shù)學(xué)教育教學(xué)水平的全面提高。
4改革教學(xué)及評(píng)價(jià)方式,建立面向應(yīng)用的數(shù)學(xué)教育體系
由于基于數(shù)學(xué)建模思想的高職數(shù)學(xué)教學(xué)改革打破了以往的課堂教學(xué)方式和考核方式,學(xué)生面對(duì)的不再是期末的一張?jiān)嚲?,而是一個(gè)個(gè)數(shù)學(xué)建模案例,需要學(xué)生運(yùn)用本學(xué)期學(xué)到的數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題,教師根據(jù)學(xué)生對(duì)案例的理解程度,數(shù)學(xué)模型運(yùn)用能力,實(shí)際過(guò)程分析和解題技巧等多方面給出評(píng)價(jià),同時(shí)積極評(píng)價(jià)、鼓勵(lì)學(xué)生的創(chuàng)新思維,并將其納入到考核體系當(dāng)中。通過(guò)以上各個(gè)方面評(píng)價(jià)的加權(quán)作為最后的評(píng)價(jià)指標(biāo)。這種以數(shù)學(xué)知識(shí)應(yīng)用為基礎(chǔ),直接面向應(yīng)用的高職數(shù)學(xué)教育模式能極大的激發(fā)學(xué)生的學(xué)習(xí)積極性和知識(shí)應(yīng)用能力,符合高職應(yīng)用型人才培養(yǎng)理念,對(duì)提高高職學(xué)生的專(zhuān)業(yè)能力也打下了堅(jiān)實(shí)的基礎(chǔ)?;跀?shù)學(xué)建模理念的高職數(shù)學(xué)教學(xué)改革是推動(dòng)高職應(yīng)用型人才培養(yǎng)體系建設(shè)的新舉措,也是推動(dòng)高職基礎(chǔ)課教學(xué)水平的重要內(nèi)容,能有效解決學(xué)生學(xué)習(xí)興趣低,基礎(chǔ)知識(shí)掌握不牢,數(shù)學(xué)知識(shí)應(yīng)用能力低等問(wèn)題,通過(guò)“案例驅(qū)動(dòng)法+討論法”,引導(dǎo)學(xué)生再次對(duì)課本知識(shí)進(jìn)行思考和應(yīng)用,有利于培養(yǎng)學(xué)生的創(chuàng)新思維和應(yīng)用能力。引入數(shù)學(xué)建模理念教學(xué),把課堂學(xué)習(xí)的主動(dòng)權(quán)交回給學(xué)生,既保證了高等數(shù)學(xué)原有的知識(shí)體系的完整,也可以提高教學(xué)效率。通過(guò)教學(xué)方式和評(píng)價(jià)方式改革,學(xué)生的學(xué)習(xí)主動(dòng)性增強(qiáng),也改變了以往對(duì)于數(shù)學(xué)學(xué)習(xí)的學(xué)習(xí)態(tài)度。高等數(shù)學(xué)作為高職教育學(xué)生必修的基礎(chǔ)課,在培養(yǎng)學(xué)生基本數(shù)學(xué)素養(yǎng)上具有重要作用,是理工類(lèi)專(zhuān)業(yè)課程體系的重要組成部分,基于數(shù)學(xué)建模理念的高職數(shù)學(xué)教學(xué)改革也為同類(lèi)基礎(chǔ)理論課改革提供了新思路和范例。
[1]孫麗.在高職數(shù)學(xué)教學(xué)改革中應(yīng)注重?cái)?shù)學(xué)建模思想的滲透[j].科技資訊,20xx(22):188.
數(shù)學(xué)建模論文篇六
1.1提高學(xué)生的語(yǔ)言和文字表達(dá)能力
1.2提高學(xué)生發(fā)現(xiàn)問(wèn)題和應(yīng)用計(jì)算機(jī)的能力
1.3培養(yǎng)學(xué)生自主團(tuán)結(jié)協(xié)作的團(tuán)隊(duì)精神
1.4培養(yǎng)學(xué)生的創(chuàng)新能力
2學(xué)生數(shù)學(xué)建模能力的培養(yǎng)措施
2.1在教學(xué)中注重滲透數(shù)學(xué)建模思想
2.2開(kāi)設(shè)數(shù)學(xué)建模公選課
2.3利用課外實(shí)踐活動(dòng)提升數(shù)學(xué)建模影響力
數(shù)學(xué)建模論文篇七
問(wèn)題教學(xué)法是一種新的教學(xué)模式,與傳統(tǒng)教學(xué)有很大的區(qū)別。在傳統(tǒng)的教學(xué)中,教師考慮最多的是“教什么、怎樣教”的問(wèn)題,很少顧及學(xué)生“學(xué)什么、怎樣學(xué)”,限制了學(xué)生學(xué)習(xí)的主動(dòng)性和創(chuàng)造性。[1]為了改變這種現(xiàn)狀,美國(guó)神經(jīng)病學(xué)教授howardbarrows于1969年創(chuàng)立了基于問(wèn)題和項(xiàng)目的學(xué)習(xí)(problembasedlearning)理念教學(xué)法。[2]這種方法不像傳統(tǒng)教學(xué)模式那樣先學(xué)習(xí)理論知識(shí)再解決問(wèn)題,而是讓學(xué)生圍繞問(wèn)題尋求解決方案。它強(qiáng)調(diào)讓學(xué)生置身于復(fù)雜的、有意義的問(wèn)題情境中,并讓學(xué)生成為該問(wèn)題情境的主體,自己去分析問(wèn)題,學(xué)習(xí)解決該問(wèn)題所需的知識(shí),進(jìn)而通過(guò)合作解決問(wèn)題。此外,教師在該過(guò)程中也可以通過(guò)提問(wèn)的方式,不斷地激發(fā)學(xué)生去思考、探索,培養(yǎng)學(xué)生自主學(xué)習(xí)的能力。與傳統(tǒng)的教學(xué)模式相比,問(wèn)題教學(xué)模式更注重對(duì)學(xué)生自學(xué)能力、創(chuàng)新能力、發(fā)現(xiàn)問(wèn)題和解決問(wèn)題能力的培養(yǎng)。問(wèn)題教學(xué)模式剛開(kāi)始主要被應(yīng)用于醫(yī)學(xué)、市場(chǎng)營(yíng)銷(xiāo)、實(shí)驗(yàn)教學(xué)、畢業(yè)論文的寫(xiě)作等領(lǐng)域。[3]近年來(lái),一些學(xué)者開(kāi)始探索將這種教學(xué)模式引入到“數(shù)學(xué)建?!闭n程的教學(xué)中。黃河科技學(xué)院從20xx級(jí)信息與計(jì)算科學(xué)專(zhuān)業(yè)的學(xué)生開(kāi)始,在“數(shù)學(xué)建?!苯虒W(xué)活動(dòng)引入問(wèn)題教學(xué)模式,已經(jīng)取得了初步的成效。
1.教師提出問(wèn)題
教師在每次上課之前要精心設(shè)計(jì)適合學(xué)生自學(xué)的問(wèn)題體系,目的是為了誘導(dǎo)學(xué)生的思維,激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生置身于特定的問(wèn)題環(huán)境中,營(yíng)造一種質(zhì)疑、探究、討論、和諧互動(dòng)的學(xué)習(xí)氛圍。這一步驟要求教師不僅需要熟悉教學(xué)內(nèi)容,還必須更好地了解學(xué)生的實(shí)際情況,這是成功實(shí)施問(wèn)題教學(xué)模式的基礎(chǔ)。
2.積極分析問(wèn)題
問(wèn)題教學(xué)法的基本特點(diǎn)是教學(xué)環(huán)節(jié)由一連串問(wèn)題組成,并且問(wèn)題與問(wèn)題之間的`聯(lián)系具有鏈接性和層次性。前一個(gè)問(wèn)題是后一個(gè)問(wèn)題的鋪墊,后一個(gè)問(wèn)題又是前一個(gè)問(wèn)題的深化和拓展。在學(xué)生熟悉了相關(guān)知識(shí)的基礎(chǔ)上,根據(jù)給出的實(shí)際問(wèn)題,教師引導(dǎo)學(xué)生進(jìn)行探索。探索活動(dòng)一般包括自學(xué)教材、觀察實(shí)驗(yàn)、小組討論等方式。學(xué)生一方面要充分利用原有認(rèn)知結(jié)構(gòu)中存儲(chǔ)的有關(guān)知識(shí)信息,另一方面可以利用教材、實(shí)驗(yàn)或教師提供的閱讀材料,獲取解決問(wèn)題的方法。在對(duì)問(wèn)題討論中教師要?jiǎng)?chuàng)設(shè)和諧民主的教學(xué)環(huán)境,要讓學(xué)生充分發(fā)表自己的見(jiàn)解,大膽質(zhì)疑,相互答辯,相互啟發(fā)。
3.解決問(wèn)題
當(dāng)所有學(xué)生都對(duì)問(wèn)題的解決方案有了一定的思路之后,教師組織課堂發(fā)言。讓每一小組推薦一位表達(dá)能力強(qiáng)的學(xué)生,在課堂上把他們對(duì)解決問(wèn)題的方法及結(jié)論的合理性進(jìn)行講解。在每組講解完之后,其他學(xué)生可以對(duì)他們進(jìn)行提問(wèn),而發(fā)言小組的學(xué)生要向其他同學(xué)和老師進(jìn)行解釋。教師在主持和引導(dǎo)的同時(shí),也可以向?qū)W生提問(wèn)。這樣通過(guò)對(duì)一個(gè)又一個(gè)問(wèn)題的提問(wèn),推動(dòng)學(xué)生思考,將問(wèn)題引向縱深層次,一步步朝著解決問(wèn)題的方向發(fā)展。
4.對(duì)問(wèn)題的結(jié)果進(jìn)行評(píng)價(jià)
問(wèn)題教學(xué)法不僅以問(wèn)題為開(kāi)端,還以問(wèn)題為終結(jié)。教學(xué)的最終結(jié)果不是傳授知識(shí)來(lái)消滅問(wèn)題,而是在解決已有問(wèn)題的基礎(chǔ)上引發(fā)更多、更廣泛的問(wèn)題。因此教師在對(duì)問(wèn)題的結(jié)果進(jìn)行總結(jié)時(shí)要注意引導(dǎo)學(xué)生反思“這個(gè)問(wèn)題為什么要這樣解決”,“這個(gè)問(wèn)題還可以怎樣解決”,“從解決這個(gè)問(wèn)題中我學(xué)到了什么”以及“這種解決方案還有什么不足之處”等等,從而激發(fā)他們提出新的問(wèn)題,這是問(wèn)題教學(xué)中最重要、最有教益的一個(gè)方面。
在基于問(wèn)題教學(xué)的過(guò)程中,每次討論的問(wèn)題都圍繞某一專(zhuān)題進(jìn)行討論學(xué)習(xí),下面以“公平的席位分配問(wèn)題”[4]為例,說(shuō)明在“數(shù)學(xué)建?!敝腥绾芜\(yùn)用問(wèn)題教學(xué)法。
1.合理設(shè)計(jì)問(wèn)題
獎(jiǎng)學(xué)金評(píng)定是學(xué)生比較關(guān)心的問(wèn)題,筆者根據(jù)學(xué)生的興趣及認(rèn)知水平選擇“獎(jiǎng)學(xué)金名額分配問(wèn)題”。設(shè)某校有5個(gè)系a、b、c、d、e,各系學(xué)生數(shù)分別為345、72、894、68、39,現(xiàn)在有74個(gè)獎(jiǎng)學(xué)金名額,問(wèn)每個(gè)系分配幾個(gè)名額比較公平?[5]在給出問(wèn)題后,我們將相關(guān)問(wèn)題印發(fā)給學(xué)生,并讓學(xué)生課下先收集關(guān)于“公平的席位分配問(wèn)題”的模型及相關(guān)求解方法并認(rèn)真研讀。
2.小組討論分析問(wèn)題
根據(jù)課下學(xué)生收集的求解方案,上課時(shí)首先以小組為單位初步討論。首先提出如果讓同學(xué)們進(jìn)行分配的話,他們會(huì)使用什么方法進(jìn)行分配,讓他們進(jìn)行討論。學(xué)生首先會(huì)給出比例分配方案,如果按人數(shù)比例分配到各系的名額恰好都是整數(shù),可以得到完全公平的分配方案。但在很多情況下,按人數(shù)比例分配到各系的名額帶有小數(shù)。比如在這個(gè)問(wèn)題中各系分配的名額數(shù)分別為:18.00、3.76、46.65、3.55、2.04,有小數(shù)部分。可以先把整數(shù)分配完,這時(shí)各系分配的名額數(shù)為:18、3、46、3、2。共分配了72名額,還有2個(gè)名額該如何分配?大家經(jīng)過(guò)討論,會(huì)提出誰(shuí)的小數(shù)部分大就把名額給誰(shuí)的分配方案,于是第73個(gè)名額給b系,第74個(gè)名額給c系。最終的方案是各系名額數(shù)分別為:18、4、47、3、2。接著老師會(huì)提出下面的問(wèn)題,這種分配方案對(duì)誰(shuí)最不公平?學(xué)生會(huì)進(jìn)一步討論每個(gè)名額代表的人數(shù),a為19.17人,b為18人,c為19.02人,d為22.67人,e為19.5人,說(shuō)明這種分配方案對(duì)d系最不公平,而b系最占便宜,兩個(gè)系中每個(gè)名額代表的人數(shù)相差了4.67人。那么要重點(diǎn)討論有沒(méi)有相對(duì)來(lái)說(shuō)比較公平的席位分配方案。
3.學(xué)生進(jìn)行發(fā)言討論
在所有小組都討論完之后,教師組織各組學(xué)生進(jìn)行課堂發(fā)言和討論,讓每組選一人報(bào)告本小組討論結(jié)果。教師對(duì)各組的報(bào)告進(jìn)行評(píng)價(jià),指出在討論過(guò)程中的問(wèn)題及不足之處。在這個(gè)問(wèn)題中,學(xué)生根據(jù)課下收集的文獻(xiàn)資料會(huì)逐步提出q值分配方案,q值分配方案的改進(jìn),q值+d’hondt分配方案,席位分配的平均公平度方案等等。每種方案都是前面方案的改進(jìn),最后我們提出問(wèn)題,這些分配方案公平度如何?讓學(xué)生逐一討論,從而營(yíng)造出一個(gè)討論主題鮮明、學(xué)習(xí)氛圍良好的課堂環(huán)境。
4.教師對(duì)結(jié)果進(jìn)行評(píng)價(jià)總結(jié)
在這個(gè)問(wèn)題中,經(jīng)過(guò)逐一討論,大部分學(xué)生認(rèn)為問(wèn)題已經(jīng)圓滿解決了,不會(huì)再對(duì)結(jié)果進(jìn)行歸納整理,不會(huì)反思問(wèn)題解決的思路。因此在最初的問(wèn)題解決后,老師要引導(dǎo)學(xué)生進(jìn)行評(píng)價(jià)總結(jié),比如:“各個(gè)方案的公平度如何”,“我們還有沒(méi)有更公平的分配方案”,“公平的席位分配方案應(yīng)滿足什么原則”等等。
從“公平的席位分配問(wèn)題”這個(gè)案例可以看到,在教學(xué)中為學(xué)生設(shè)計(jì)一個(gè)真實(shí)的問(wèn)題進(jìn)行教學(xué),學(xué)生可以通過(guò)真實(shí)問(wèn)題進(jìn)行學(xué)習(xí),并且以一個(gè)真實(shí)問(wèn)題的解決為主線,激發(fā)學(xué)生的學(xué)習(xí)興趣和探索精神,再通過(guò)結(jié)果反饋信息,引導(dǎo)學(xué)生逐步深入理解學(xué)習(xí)內(nèi)容。學(xué)生在研究問(wèn)題的過(guò)程中不僅學(xué)習(xí)了課本上的知識(shí),而且還親身體會(huì)了解決實(shí)際問(wèn)題的樂(lè)趣,為學(xué)生以后自主學(xué)習(xí)提供了極大的幫助。[6]四、結(jié)語(yǔ)當(dāng)然,在“數(shù)學(xué)建?!闭n程的教學(xué)過(guò)程中問(wèn)題教學(xué)模式也存在不足之處,比如課程內(nèi)容多、課時(shí)少,問(wèn)題討論時(shí)間和講授時(shí)間出現(xiàn)矛盾,對(duì)有的專(zhuān)題討論不夠深入,學(xué)生參與度不夠,學(xué)生發(fā)言的深度和廣度都有待于進(jìn)一步提高等等。這需要教師認(rèn)真歸納講課內(nèi)容,盡量分離出較多比較有吸引力的專(zhuān)題供學(xué)生討論,以問(wèn)題為中心規(guī)劃教學(xué)內(nèi)容,讓學(xué)生圍繞問(wèn)題尋求解決方案,從而提高學(xué)生學(xué)習(xí)的主動(dòng)性,提高學(xué)生在教學(xué)過(guò)程中的參與程度,激發(fā)學(xué)生的求知欲?!皵?shù)學(xué)建?!闭n程教學(xué)的本身就是一個(gè)不斷探索、創(chuàng)新和提高的過(guò)程,選擇正確有效的教學(xué)方法能更好培養(yǎng)學(xué)生的創(chuàng)新能力,激發(fā)學(xué)生對(duì)數(shù)學(xué)建模的興趣。
數(shù)學(xué)建模論文篇八
將建模的思想有效的滲透到應(yīng)用數(shù)學(xué)的教學(xué)過(guò)程中去,是我們當(dāng)前開(kāi)展應(yīng)用數(shù)學(xué)教育的未來(lái)發(fā)展趨勢(shì),怎樣才能夠使應(yīng)用數(shù)學(xué)更好的服務(wù)社會(huì)經(jīng)濟(jì)的發(fā)展,充分發(fā)揮數(shù)學(xué)工具在實(shí)際問(wèn)題解決中的重要作用,是我們當(dāng)前進(jìn)行應(yīng)用數(shù)學(xué)研究的核心問(wèn)題,而建模思想在應(yīng)用數(shù)學(xué)中的運(yùn)用則能夠很好的解決這一問(wèn)題。
數(shù)學(xué)教育至少應(yīng)該涵蓋純粹數(shù)學(xué)和應(yīng)用數(shù)學(xué)兩方面內(nèi)容,目前我國(guó)數(shù)學(xué)教育內(nèi)容以純粹數(shù)學(xué)為主,極少包括應(yīng)用數(shù)學(xué)內(nèi)容,這割裂了數(shù)學(xué)與外部世界的血肉聯(lián)系,使數(shù)學(xué)變成了多數(shù)學(xué)生眼中的抽象、枯燥、無(wú)用的思維游戲,而厭學(xué)成風(fēng)。因此,大家對(duì)現(xiàn)行的數(shù)學(xué)教育不滿意,期望改革,期望找到方法激發(fā)學(xué)生的學(xué)習(xí)興趣、培養(yǎng)學(xué)生利用數(shù)學(xué)解決各種實(shí)際問(wèn)題的能力。在不改變傳統(tǒng)的教學(xué)體系的前提下,有機(jī)地融入應(yīng)用數(shù)學(xué)內(nèi)容,應(yīng)是解決現(xiàn)存問(wèn)題的有效方法。事實(shí)上,數(shù)學(xué)發(fā)展的根本原動(dòng)力,它的最初的根源,是來(lái)自客觀實(shí)際的需要,數(shù)學(xué)教學(xué)中理應(yīng)突出數(shù)學(xué)思想的來(lái)龍去脈,揭示數(shù)學(xué)概念和公式的實(shí)際來(lái)源和應(yīng)用,恢復(fù)并暢通數(shù)學(xué)與外部世界的血肉聯(lián)系。伴隨著社會(huì)生產(chǎn)力的不斷發(fā)展,多個(gè)學(xué)科交叉發(fā)展,使得應(yīng)用數(shù)學(xué)逐漸發(fā)展成擁有眾多發(fā)展方向的學(xué)科,應(yīng)用數(shù)學(xué)所運(yùn)用的領(lǐng)域不斷延伸,已經(jīng)不再局限于傳統(tǒng)的、而是想著更為寬闊的、新興的學(xué)科以及高新技術(shù)領(lǐng)域發(fā)展,應(yīng)用數(shù)學(xué)目前已經(jīng)滲透到社會(huì)經(jīng)濟(jì)發(fā)展的各個(gè)行業(yè),在這一大背景下,應(yīng)用數(shù)學(xué)的研究者就擁有了極大的發(fā)展空間以及展示才能的舞臺(tái),也迎來(lái)了應(yīng)用數(shù)學(xué)發(fā)展的新機(jī)遇。
數(shù)學(xué)這一學(xué)科不僅具有概念抽象性、邏輯嚴(yán)密性、體系完整性以及結(jié)論確定性,而且還具備非常明顯的應(yīng)用廣泛性,伴隨著計(jì)算機(jī)網(wǎng)絡(luò)在社會(huì)生活中的廣泛運(yùn)用,人們對(duì)于實(shí)踐問(wèn)題的解決要求越來(lái)越精確,這就給應(yīng)用數(shù)學(xué)的廣泛運(yùn)用帶來(lái)了前所未有的機(jī)遇。應(yīng)用數(shù)學(xué)在這一背景下也已經(jīng)成為當(dāng)前高科技水平的一個(gè)重要內(nèi)容,應(yīng)用數(shù)學(xué)建模思想的引入與使用能夠極大的提升自身應(yīng)用數(shù)學(xué)的綜合水平以及思維意識(shí),開(kāi)展應(yīng)用數(shù)學(xué)建模不僅能夠有效的提升自己的學(xué)習(xí)熱情與探究意識(shí),而且還能夠?qū)?zhuān)業(yè)知識(shí)同建模密切結(jié)合在一起,對(duì)于專(zhuān)業(yè)知識(shí)的有效掌握是非常有益的。
3.1充分重視建模的橋梁作用
建模是實(shí)現(xiàn)數(shù)學(xué)知識(shí)與現(xiàn)實(shí)問(wèn)題相聯(lián)系的橋梁與紐帶,通過(guò)進(jìn)行建模能夠有效的`將實(shí)際問(wèn)題進(jìn)行簡(jiǎn)化。在這一轉(zhuǎn)化的過(guò)程中,應(yīng)當(dāng)深入實(shí)際進(jìn)行調(diào)查、收集相關(guān)數(shù)據(jù)信息,認(rèn)真分析對(duì)象的獨(dú)特特征及規(guī)律,構(gòu)建起反映實(shí)際問(wèn)題的數(shù)學(xué)關(guān)系,運(yùn)用數(shù)學(xué)理論進(jìn)行問(wèn)題的解決。這正是各個(gè)學(xué)科之間進(jìn)行有效聯(lián)系的結(jié)合點(diǎn),通過(guò)引進(jìn)建模思想,不僅能夠使我們有效掌握數(shù)學(xué)理論之外的實(shí)踐問(wèn)題,還能夠推動(dòng)創(chuàng)新意識(shí)的提升,因此,我們應(yīng)當(dāng)充分重視建模的作用。
3.2將建模的方法以及相關(guān)理論引入到數(shù)學(xué)教學(xué)中來(lái)
我國(guó)當(dāng)前數(shù)學(xué)課程教學(xué)體系的現(xiàn)狀包括高等數(shù)學(xué)、線性代數(shù)、概率論與數(shù)理統(tǒng)計(jì)等幾個(gè)部分。當(dāng)前應(yīng)用數(shù)學(xué)的發(fā)展,滿足這一學(xué)科的建設(shè)以及其他學(xué)科對(duì)這一學(xué)科的需要,教師在教學(xué)中應(yīng)當(dāng)將問(wèn)題的背景介紹清楚,并列出幾種解決方案,啟發(fā)學(xué)生進(jìn)行討論并構(gòu)建數(shù)學(xué)模型。學(xué)生們?cè)谡n堂上就能夠獲得更多的思考和討論的機(jī)會(huì),能夠充分調(diào)動(dòng)學(xué)生們的積極性,使其能夠立足實(shí)際進(jìn)行思考,這樣一來(lái)就形成了以實(shí)際問(wèn)題為基礎(chǔ)的數(shù)學(xué)建模教學(xué)特色。
3.3積極參加數(shù)學(xué)模型課等相關(guān)課程與活動(dòng)
數(shù)學(xué)應(yīng)用綜合性的實(shí)驗(yàn),要求我們掌握數(shù)學(xué)知識(shí)的綜合性運(yùn)用,做法是老師先講一些數(shù)學(xué)建模的一些應(yīng)用實(shí)例,然后學(xué)生上機(jī)實(shí)踐,強(qiáng)調(diào)學(xué)生的動(dòng)手實(shí)踐。數(shù)學(xué)實(shí)驗(yàn)課應(yīng)該說(shuō)是數(shù)學(xué)模型的輔助課程,主要培養(yǎng)我們的數(shù)學(xué)思維和創(chuàng)新能力,還應(yīng)當(dāng)組織一些建模比賽,不斷提升數(shù)學(xué)建模的綜合水平。
上述幾個(gè)部分的論述與分析,我們看到,在應(yīng)用數(shù)學(xué)中加強(qiáng)建模思想具有非常重要的意義,不僅需要在課堂學(xué)習(xí)過(guò)程中認(rèn)真掌握數(shù)學(xué)理論知識(shí),還應(yīng)當(dāng)深入了解數(shù)學(xué)理論在實(shí)際生活中的可用之處,盡可能的使應(yīng)用數(shù)學(xué)與自身所學(xué)專(zhuān)業(yè)相聯(lián)系,這樣,才能夠使應(yīng)用數(shù)學(xué)的能力與水平在日常實(shí)踐過(guò)程中得到提升。就當(dāng)前高等數(shù)學(xué)的現(xiàn)狀來(lái)看,加強(qiáng)創(chuàng)新意識(shí)以及將實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題能力的培養(yǎng),提升綜合運(yùn)用本專(zhuān)業(yè)知識(shí)以來(lái)解決實(shí)踐問(wèn)題的能力,使創(chuàng)新思維得到最大限度的發(fā)揮。
[1]余荷香,趙益民.數(shù)學(xué)建模在高職數(shù)學(xué)教學(xué)中的應(yīng)用研究[j].出國(guó)與就業(yè)(就業(yè)版),20xx(10).
[2]關(guān)淮海.培養(yǎng)數(shù)學(xué)建模思想與方法高職高專(zhuān)數(shù)學(xué)教改之趨勢(shì)[j].職大學(xué)報(bào),20xx(02).
[3]李傳欣.數(shù)學(xué)建模在工程類(lèi)專(zhuān)業(yè)數(shù)學(xué)教學(xué)中的應(yīng)用研究[j].中國(guó)科教創(chuàng)新導(dǎo)刊,20xx(35).
[4]李秀林.高等數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)建模的探討[j].吉林省教育學(xué)院學(xué)報(bào)(學(xué)科版),20xx(08).
[5]吳健輝,黃志堅(jiān),汪龍虎.對(duì)數(shù)學(xué)建模思想融入高等數(shù)學(xué)教.學(xué)中的探討[j].景德鎮(zhèn)高專(zhuān)學(xué)報(bào),20xx(04).
數(shù)學(xué)建模論文篇九
摘要:在新課改以后,要求教師要在教學(xué)中重視學(xué)生的主體地位,提升學(xué)生學(xué)習(xí)興趣,培養(yǎng)他們的自主學(xué)習(xí)能力。本文從小學(xué)數(shù)學(xué)教學(xué)過(guò)程中數(shù)學(xué)建模入手,對(duì)如何將數(shù)學(xué)建模運(yùn)用到學(xué)生解題過(guò)程中進(jìn)行了分析。
關(guān)鍵詞:小學(xué)數(shù)學(xué);建模;運(yùn)用
數(shù)學(xué)建模是指利用數(shù)學(xué)模型的形式去解決實(shí)際中遇到的問(wèn)題,換句話說(shuō),就是利用數(shù)學(xué)思維、數(shù)學(xué)方法解決各種數(shù)學(xué)問(wèn)題。數(shù)學(xué)建模是在新課程改革后出現(xiàn)的新概念,經(jīng)過(guò)一段時(shí)間的觀察我們可以發(fā)現(xiàn),數(shù)學(xué)建模的方法能夠有效的提高學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生的數(shù)學(xué)能力。這種方式能夠?qū)?fù)雜的數(shù)學(xué)問(wèn)題利用簡(jiǎn)單的方式找到解決方案,是提高小學(xué)數(shù)學(xué)課堂效率及課堂質(zhì)量的有效手段。小學(xué)數(shù)學(xué)是小學(xué)學(xué)習(xí)中的重要課程之一,也是培養(yǎng)學(xué)生數(shù)學(xué)思維的重要階段??梢哉f(shuō),小學(xué)數(shù)學(xué)的學(xué)習(xí)是學(xué)生學(xué)習(xí)數(shù)學(xué)的關(guān)鍵,對(duì)今后的學(xué)習(xí)起到極大的影響。因此,對(duì)于小學(xué)數(shù)學(xué)教師來(lái)說(shuō),不斷的完善教學(xué)手段,提高數(shù)學(xué)課堂質(zhì)量是教學(xué)工作中的重中之重。而數(shù)學(xué)建模就是為了解決數(shù)學(xué)在生活中的實(shí)際問(wèn)題,能夠讓學(xué)生感受到數(shù)學(xué)本身的魅力,培養(yǎng)他們的數(shù)學(xué)思維,提高數(shù)學(xué)學(xué)習(xí)能力,從而讓小學(xué)數(shù)學(xué)教學(xué)質(zhì)量也得到大幅度的提升。小學(xué)數(shù)學(xué)與數(shù)學(xué)建模之間有著密不可分的作用,兩者相互聯(lián)系、相互促進(jìn),如何有效的將數(shù)學(xué)建模運(yùn)用在小學(xué)數(shù)學(xué)教學(xué)過(guò)程中,是每個(gè)小學(xué)數(shù)學(xué)教師都值得思考的問(wèn)題。
一、培養(yǎng)學(xué)生數(shù)學(xué)建模意識(shí)
數(shù)學(xué)建模是為了解決數(shù)學(xué)中遇到的問(wèn)題,數(shù)學(xué)本身特別是小學(xué)數(shù)學(xué)也是一門(mén)較貼近學(xué)生生活的學(xué)科。因此在數(shù)學(xué)學(xué)習(xí)中,教師要首先培養(yǎng)學(xué)生的數(shù)學(xué)學(xué)習(xí)意識(shí),讓他們感受到數(shù)學(xué)與生活的緊密聯(lián)系,然后再引導(dǎo)學(xué)生用數(shù)學(xué)建模去解決遇到的問(wèn)題。在這一過(guò)程中,數(shù)學(xué)教師要注意以下兩個(gè)問(wèn)題:(一)在教學(xué)中一定要貼近學(xué)生的生活,課堂中所提出的問(wèn)題也必須要符合生活實(shí)際,讓學(xué)生對(duì)所學(xué)內(nèi)容感到親切。積極引導(dǎo)學(xué)生利用多種方式解決同一問(wèn)題,尤其是利用數(shù)學(xué)建模的方式,以達(dá)到培養(yǎng)他們的數(shù)學(xué)思維以及想象能力的目的。(二)在學(xué)生進(jìn)行數(shù)學(xué)建模的過(guò)程中要利用多鼓勵(lì)的方式調(diào)動(dòng)他們對(duì)數(shù)學(xué)學(xué)習(xí)的積極性,讓他們?cè)跀?shù)學(xué)建模中獲得成就感,增加自信心,以此來(lái)提高學(xué)生在今后學(xué)習(xí)中使用數(shù)學(xué)建模方法的熱情。
二、提高學(xué)生想象力,用數(shù)學(xué)建模簡(jiǎn)化問(wèn)題
對(duì)于小學(xué)生來(lái)說(shuō),他們的思維與其他年齡段相比極其活躍,擁有了豐富的想象力。在數(shù)學(xué)學(xué)習(xí)中,如果能將想象力與數(shù)學(xué)學(xué)習(xí)結(jié)合在一起,一定會(huì)得到意想不到的效果。教師可以根據(jù)小學(xué)生這一特點(diǎn),提高他們的想象力,然后再引導(dǎo)他們利用數(shù)學(xué)建模解決問(wèn)題,讓題目簡(jiǎn)單化。具體來(lái)說(shuō),就是在面對(duì)復(fù)雜的'數(shù)學(xué)問(wèn)題時(shí),教師可以先為學(xué)生創(chuàng)建教學(xué)情境,以這樣的方式提高學(xué)生的學(xué)習(xí)興趣,讓他們?cè)敢庵鲃?dòng)去深入的研究遇到的題目。之后教師再去對(duì)他們進(jìn)行引導(dǎo),讓他們能夠理解題目中所提問(wèn)題的含義,并能夠運(yùn)用他們的想象能力思考解決問(wèn)題的方式。最后再引導(dǎo)他們進(jìn)行數(shù)學(xué)建模,解決問(wèn)題。這樣的方式充分的利用了學(xué)生的想象能力,將所需解決的問(wèn)題簡(jiǎn)單化。
三、選擇合適的題目作為建模案例
在數(shù)學(xué)建模過(guò)程中,教師也要時(shí)刻牢記題目應(yīng)該貼近學(xué)生的生活,符合實(shí)際,并且具有一定的趣味性,讓他們有興趣投入到數(shù)學(xué)建模的過(guò)程中去,然后再反復(fù)練習(xí)之后達(dá)到提高他們建模能力的目的。在選擇數(shù)學(xué)建模案例時(shí)教師主要應(yīng)該注意以下兩點(diǎn):首先,教師在選擇建模案例時(shí)要盡量選擇比較典型的問(wèn)題,能夠讓學(xué)生在學(xué)習(xí)了該題目以后掌握這一類(lèi)的解題方法,達(dá)到小學(xué)數(shù)學(xué)教學(xué)的目的。所以,這就需要教師對(duì)題目進(jìn)行深入的分析,看是否在擁有趣味性、真實(shí)性的同時(shí)符合教學(xué)要求。其次,題目最好能夠擁有可變性,教師能夠通過(guò)對(duì)題目中已知條件的改變讓學(xué)生進(jìn)行不同方面的建模練習(xí),以此提高他們數(shù)學(xué)建模的能力。
四、引導(dǎo)學(xué)生主動(dòng)進(jìn)行數(shù)學(xué)建模
在教師經(jīng)過(guò)反復(fù)的教學(xué)后,學(xué)生都已經(jīng)擁有了基本的數(shù)學(xué)建模知識(shí),了解了數(shù)學(xué)建模過(guò)程,并且能夠在解題過(guò)程中簡(jiǎn)單的使用數(shù)學(xué)建模。此時(shí),教師在教學(xué)中就可以引導(dǎo)學(xué)生利用數(shù)學(xué)建模解決數(shù)學(xué)題目了。引導(dǎo)學(xué)生用數(shù)學(xué)建模方法解決數(shù)學(xué)問(wèn)題,就要在解題過(guò)程中多對(duì)學(xué)生進(jìn)行這一方面的鼓勵(lì),讓他們提高建模信心。在這一過(guò)程中,教師還可以嘗試讓學(xué)生之間利用合作的方式讓他們進(jìn)行數(shù)學(xué)建模方法的探討,并在探討的過(guò)程中吸取他人的經(jīng)驗(yàn),提高自己數(shù)學(xué)建模水平,同時(shí)這樣的方式能夠讓數(shù)學(xué)建模深入到每一個(gè)學(xué)生的心中,逐漸影響每一個(gè)學(xué)生的解題思路,讓他們能夠在解題過(guò)程中熟練運(yùn)用建模的方式,提高解題能力。數(shù)學(xué)建模的方法能夠有效的改變過(guò)去的傳統(tǒng)教學(xué)思路,增加學(xué)生對(duì)數(shù)學(xué)的學(xué)習(xí)興趣,提高數(shù)學(xué)解題能力。這種教學(xué)方法對(duì)于小學(xué)數(shù)學(xué)教師來(lái)說(shuō),值得不斷的探討研究,并應(yīng)用在教學(xué)中,以此提高數(shù)學(xué)課堂的教學(xué)效率和教學(xué)質(zhì)量。
數(shù)學(xué)建模論文篇十
3.3增強(qiáng)選擇數(shù)學(xué)模型的能力。
選擇數(shù)學(xué)模型是數(shù)學(xué)能力的反映。數(shù)學(xué)模型的建立有多種方法,怎樣選擇一個(gè)最佳的模型,體現(xiàn)數(shù)學(xué)能力的強(qiáng)弱。建立數(shù)學(xué)模型主要涉及到方程、函數(shù)、不等式、數(shù)列通項(xiàng)公式、求和公式、曲線方程等類(lèi)型。結(jié)合教學(xué)內(nèi)容,以函數(shù)建模為例,以下實(shí)際問(wèn)題所選擇的數(shù)學(xué)模型列表:
函數(shù)建模類(lèi)型實(shí)際問(wèn)題
一次函數(shù)成本、利潤(rùn)、銷(xiāo)售收入等
二次函數(shù)優(yōu)化問(wèn)題、用料最省問(wèn)題、造價(jià)最低、利潤(rùn)最大等
冪函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)細(xì)胞分裂、生物繁殖等
三角函數(shù)測(cè)量、交流量、力學(xué)問(wèn)題等
3.4加強(qiáng)數(shù)學(xué)運(yùn)算能力。
數(shù)學(xué)應(yīng)用題一般運(yùn)算量較大、較復(fù)雜,且有近似計(jì)算。有的盡管思路正確、建模合理,但計(jì)算能力欠缺,就會(huì)前功盡棄。所以加強(qiáng)數(shù)學(xué)運(yùn)算推理能力是使數(shù)學(xué)建模正確求解的關(guān)鍵所在,忽視運(yùn)算能力,特別是計(jì)算能力的培養(yǎng),只重視推理過(guò)程,不重視計(jì)算過(guò)程的做法是不可取的。
利用數(shù)學(xué)建模解數(shù)學(xué)應(yīng)用題對(duì)于多角度、多層次、多側(cè)面思考問(wèn)題,培養(yǎng)學(xué)生發(fā)散思維能力是很有益的,是提高學(xué)生素質(zhì),進(jìn)行素質(zhì)教育的一條有效途徑。同時(shí)數(shù)學(xué)建模的`應(yīng)用也是科學(xué)實(shí)踐,有利于實(shí)踐能力的培養(yǎng),是實(shí)施素質(zhì)教育所必須的,需要引起教育工作者的足夠重視。
數(shù)學(xué)建模論文篇十一
:隨著經(jīng)濟(jì)的快速發(fā)展,我國(guó)的科學(xué)技術(shù)也得到了長(zhǎng)足的進(jìn)步,在計(jì)算機(jī)應(yīng)用方面,從對(duì)計(jì)算機(jī)技術(shù)尚存新鮮感到運(yùn)用成熟,可以說(shuō)有了質(zhì)的飛躍。在日常生活以及技術(shù)操作當(dāng)中,計(jì)算機(jī)已經(jīng)融入其中,廣泛地應(yīng)用于各行各業(yè),筆者以數(shù)學(xué)建模為例,分析了數(shù)學(xué)建模與計(jì)算機(jī)應(yīng)用之間的關(guān)系,與此同時(shí),也探尋了計(jì)算機(jī)應(yīng)用技術(shù)在數(shù)學(xué)建模的輔助之下發(fā)揮的作用,并對(duì)數(shù)學(xué)建模進(jìn)行概念定義,使得讀者能夠?qū)?shù)學(xué)建模的意義有著更深層次的了解,希望能夠起到促進(jìn)二者之間的良性發(fā)展。
數(shù)學(xué)建模;計(jì)算機(jī)技術(shù);計(jì)算機(jī)應(yīng)用
隨著經(jīng)濟(jì)的快速發(fā)展,我國(guó)的科學(xué)技術(shù)也有了長(zhǎng)足的進(jìn)步,而與之密不可分的數(shù)學(xué)學(xué)科也有著不可小覷的進(jìn)步,與此同時(shí),數(shù)學(xué)學(xué)科的延伸領(lǐng)域從物理等逐漸擴(kuò)展到環(huán)境、人口、社會(huì)、經(jīng)濟(jì)范圍,使得其作用力逐漸增強(qiáng)。不僅如此,數(shù)學(xué)學(xué)科由原本的研究事物的性質(zhì)分析逐漸轉(zhuǎn)變到研究定量性質(zhì)范圍,促進(jìn)了多方面多層次的發(fā)展,由此可見(jiàn),數(shù)學(xué)學(xué)科的重要性質(zhì)。在日常生活中,運(yùn)用數(shù)學(xué)學(xué)科去解決實(shí)際問(wèn)題時(shí),首要完成的就是從復(fù)雜的事物中找到普遍的規(guī)律現(xiàn)象存在,并用最為清晰的數(shù)字、符號(hào)、公式等將潛在的信息表達(dá)出來(lái),再運(yùn)用計(jì)算機(jī)技術(shù)加以呈現(xiàn),形成人們所要完成的結(jié)果。筆者以數(shù)學(xué)建模為例,分析了數(shù)學(xué)建模與計(jì)算機(jī)應(yīng)用之間的關(guān)系,與此同時(shí),也探尋了計(jì)算機(jī)應(yīng)用技術(shù)在數(shù)學(xué)建模的輔助之下發(fā)揮的作用,并對(duì)數(shù)學(xué)建模進(jìn)行概念定義,使得讀者能夠?qū)?shù)學(xué)建模的意義有著更深層次的了解,希望能夠起到促進(jìn)二者之間的良性發(fā)展。
從宏觀角度上來(lái)講,數(shù)學(xué)建模是更側(cè)重于實(shí)際研究方面,并不僅僅是通過(guò)數(shù)字演示來(lái)完成事物的一般發(fā)展規(guī)律,與一般的理論研究截然不同。其研究范圍之廣,能夠深入到各個(gè)領(lǐng)域當(dāng)中,從任何一個(gè)相關(guān)領(lǐng)域中都能夠找到數(shù)學(xué)學(xué)科的發(fā)展軌跡,從中不難看出數(shù)學(xué)學(xué)科的實(shí)際意義與鮮明特點(diǎn)。數(shù)學(xué)為一門(mén)注重實(shí)際問(wèn)題研究的學(xué)科,這一性質(zhì)方向決定了其研究的層次,其研究范圍大到漫無(wú)邊際的宇宙,小到對(duì)于個(gè)體微生物或者單細(xì)胞物體,綜合性之強(qiáng)形成了研究范圍廣的特點(diǎn)。多個(gè)學(xué)科之間互相影響,從中找到互相之間存在的相互聯(lián)系,其中有許多不能夠被忽視的數(shù)學(xué)元素,且這些元素都是至關(guān)重要的,所以這個(gè)計(jì)算過(guò)程十分復(fù)雜,計(jì)算量與數(shù)據(jù)驗(yàn)算過(guò)程也十分耗費(fèi)時(shí)間,因此需要充足的存儲(chǔ)空間支持這一過(guò)程的運(yùn)行。在數(shù)學(xué)建模的過(guò)程當(dāng)中,所涉獵的數(shù)學(xué)算法并不是很簡(jiǎn)單,而建立的模型也遵循個(gè)人習(xí)慣,因此建成的模型也不是一成不變的,但是都能夠得出相同的答案。正因如此,在數(shù)學(xué)建模的過(guò)程當(dāng)中,就需要使用各種輔助工具來(lái)完成這一過(guò)程。由于計(jì)算機(jī)軟件具有的高速運(yùn)轉(zhuǎn)空間,使得計(jì)算機(jī)技術(shù)應(yīng)用于數(shù)學(xué)學(xué)科的建模過(guò)程當(dāng)中,與數(shù)學(xué)建模過(guò)程密不可分息息相關(guān)。由此可見(jiàn),計(jì)算機(jī)技術(shù)的應(yīng)用水平對(duì)于數(shù)學(xué)學(xué)科的重要作用。
2。1計(jì)算機(jī)的獨(dú)特性與數(shù)學(xué)建模的實(shí)際性特點(diǎn)計(jì)算機(jī)的獨(dú)特性與數(shù)學(xué)建模的實(shí)際性特點(diǎn),使得二者之間有著密不可分的聯(lián)系,正是因?yàn)檫@種聯(lián)系使得雙方都能夠有長(zhǎng)足的發(fā)展,在技術(shù)上是起著互相促進(jìn)的作用。計(jì)算機(jī)的廣泛應(yīng)用為數(shù)學(xué)建模提供了較為便利的服務(wù),在使用過(guò)程當(dāng)中,數(shù)學(xué)建模也能夠起到完成對(duì)計(jì)算機(jī)技術(shù)的促進(jìn),能夠在這一過(guò)程中形成更為便捷高速的使用方法與途徑,使得計(jì)算機(jī)技術(shù)應(yīng)用更為靈活,也可以說(shuō)數(shù)學(xué)建模為計(jì)算機(jī)技術(shù)的實(shí)際應(yīng)用提供了更為廣闊的應(yīng)用空間,從中不難發(fā)現(xiàn),數(shù)學(xué)建模對(duì)于計(jì)算機(jī)應(yīng)用技術(shù)的支持性。計(jì)算機(jī)應(yīng)用技術(shù)需要合成的是多方面的技術(shù)支持,而數(shù)學(xué)建模則是需要首要完成的,二者之間是相互影響共同促進(jìn)的作用。
2。2計(jì)算機(jī)為數(shù)學(xué)建模提供了重要的技術(shù)支持?jǐn)?shù)學(xué)建模對(duì)于計(jì)算機(jī)應(yīng)用技術(shù)的重要的指導(dǎo)意義與作用。第一點(diǎn),計(jì)算機(jī)在其技術(shù)的支持之下,有著大量的存儲(chǔ)空間能夠完成存儲(chǔ)資料的這一過(guò)程,許多重要資料在計(jì)算機(jī)技術(shù)的保護(hù)之下,存儲(chǔ)時(shí)間較為長(zhǎng)久,且保護(hù)力度較大,不容易被破壞及減少了不必要的人力以及物力;第二點(diǎn),計(jì)算機(jī)是多媒體的一個(gè)分支,運(yùn)用其成熟的互聯(lián)網(wǎng)思維技術(shù),能夠完成數(shù)學(xué)建模從平面到空間的轉(zhuǎn)化,能夠提供更為成熟的模擬環(huán)境,從而提高實(shí)踐的效率。由于數(shù)學(xué)建模過(guò)程的復(fù)雜化及對(duì)于實(shí)際問(wèn)題的研究方向的特質(zhì),使得對(duì)于各項(xiàng)技術(shù)的要求就很高,所以,需要涉及的操作與數(shù)據(jù)量非常大,過(guò)程也十分復(fù)雜,常見(jiàn)的過(guò)程有三維打印、三維激光掃描等。這些都是需要計(jì)算機(jī)技術(shù)的支持才能夠完成的,所以對(duì)于計(jì)算機(jī)技術(shù)的要求非常高,與此同時(shí),計(jì)算機(jī)應(yīng)用技術(shù)為數(shù)學(xué)建模提供了更為便捷、快速的解決方案與途徑。
2。3數(shù)學(xué)建模為計(jì)算機(jī)的發(fā)展提供了基石計(jì)算機(jī)的產(chǎn)生起源于數(shù)學(xué)建模的過(guò)程,在二十世紀(jì)八十年代,由于導(dǎo)彈在飛行時(shí)的運(yùn)行軌跡的計(jì)算量過(guò)大,人工無(wú)法滿足這一高速率的運(yùn)算條件,基于這一背景條件,產(chǎn)生了計(jì)算機(jī),計(jì)算機(jī)應(yīng)用技術(shù)由此拉開(kāi)了序幕。數(shù)學(xué)建模的過(guò)程是需要計(jì)算機(jī)來(lái)完成的,在全部的過(guò)程當(dāng)中,計(jì)算機(jī)參與計(jì)算的比重很大,從某種意義程度上來(lái)講,計(jì)算機(jī)技術(shù)對(duì)于數(shù)學(xué)建模的發(fā)展是起著推動(dòng)性的作用的,二者之間是有著聯(lián)系的。
數(shù)學(xué)建模論文篇十二
大學(xué)數(shù)學(xué)具有高度抽象性和概括性等特點(diǎn),知識(shí)本身難度大再加上學(xué)時(shí)少、內(nèi)容多等教學(xué)現(xiàn)狀常常造成學(xué)生的學(xué)習(xí)積極性不高、知識(shí)掌握不夠透徹、遇到實(shí)際問(wèn)題時(shí)束手無(wú)策,而數(shù)學(xué)建模思想能激發(fā)學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)的意識(shí),提高其解決實(shí)際問(wèn)題的能力。數(shù)學(xué)建模活動(dòng)為學(xué)生構(gòu)建了一個(gè)由數(shù)學(xué)知識(shí)通向?qū)嶋H問(wèn)題的橋梁,是學(xué)生的數(shù)學(xué)知識(shí)和應(yīng)用能力共同提高的最佳結(jié)合方式。因此在大學(xué)數(shù)學(xué)教育中應(yīng)加強(qiáng)數(shù)學(xué)建模教育和活動(dòng),讓學(xué)生積極主動(dòng)學(xué)習(xí)建模思想,認(rèn)真體驗(yàn)和感知建模過(guò)程,以此啟迪創(chuàng)新意識(shí)和創(chuàng)新思維,提高其素質(zhì)和創(chuàng)新能力,實(shí)現(xiàn)向素質(zhì)教育的轉(zhuǎn)化和深入。
一、數(shù)學(xué)建模的含義及特點(diǎn)
數(shù)學(xué)建模即抓住問(wèn)題的本質(zhì),抽取影響研究對(duì)象的主因素,將其轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,利用數(shù)學(xué)思維、數(shù)學(xué)邏輯進(jìn)行分析,借助于數(shù)學(xué)方法及相關(guān)工具進(jìn)行計(jì)算,最后將所得的答案回歸實(shí)際問(wèn)題,即模型的檢驗(yàn),這就是數(shù)學(xué)建模的全過(guò)程。一般來(lái)說(shuō)",數(shù)學(xué)建模"包含五個(gè)階段。
1.準(zhǔn)備階段
主要分析問(wèn)題背景,已知條件,建模目的等問(wèn)題。
2.假設(shè)階段
做出科學(xué)合理的假設(shè),既能簡(jiǎn)化問(wèn)題,又能抓住問(wèn)題的本質(zhì)。
3.建立階段
從眾多影響研究對(duì)象的因素中適當(dāng)?shù)厝∩?,抽取主因素予以考慮,建立能刻畫(huà)實(shí)際問(wèn)題本質(zhì)的數(shù)學(xué)模型。
4.求解階段
對(duì)已建立的數(shù)學(xué)模型,運(yùn)用數(shù)學(xué)方法、數(shù)學(xué)軟件及相關(guān)的工具進(jìn)行求解。
5.驗(yàn)證階段
用實(shí)際數(shù)據(jù)檢驗(yàn)?zāi)P?,如果偏差較大,就要分析假設(shè)中某些因素的合理性,修改模型,直至吻合或接近現(xiàn)實(shí)。如果建立的模型經(jīng)得起實(shí)踐的檢驗(yàn),那么此模型就是符合實(shí)際規(guī)律的,能解決實(shí)際問(wèn)題或有效預(yù)測(cè)未來(lái)的,這樣的建模就是成功的,得到的模型必被推廣應(yīng)用。
二、加強(qiáng)數(shù)學(xué)建模教育的作用和意義
(一)加強(qiáng)數(shù)學(xué)建模教育有助于激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,提高數(shù)學(xué)修養(yǎng)和素質(zhì)
數(shù)學(xué)建模教育強(qiáng)調(diào)如何把實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,進(jìn)而利用數(shù)學(xué)及其有關(guān)的工具解決這些問(wèn)題,因此在大學(xué)數(shù)學(xué)的教學(xué)活動(dòng)中融入數(shù)學(xué)建模思想,鼓勵(lì)學(xué)生參與數(shù)學(xué)建模實(shí)踐活動(dòng),不但可以使學(xué)生學(xué)以致用,做到理論聯(lián)系實(shí)際,而且還會(huì)使他們感受到數(shù)學(xué)的生機(jī)與活力,激發(fā)求知的興趣和探索的欲望,變被動(dòng)學(xué)習(xí)為主動(dòng)參與其效率就會(huì)大為改善。數(shù)學(xué)修養(yǎng)和素質(zhì)自然而然得以培養(yǎng)并提高。
(二)加強(qiáng)數(shù)學(xué)建模教育有助于提高學(xué)生的分析解決問(wèn)題能力、綜合應(yīng)用能力
數(shù)學(xué)建模問(wèn)題來(lái)源于社會(huì)生活的眾多領(lǐng)域,在建模過(guò)程中,學(xué)生首先需要閱讀相關(guān)的文獻(xiàn)資料,然后應(yīng)用數(shù)學(xué)思維、數(shù)學(xué)邏輯及相關(guān)知識(shí)對(duì)實(shí)際問(wèn)題進(jìn)行深入剖析研究并經(jīng)過(guò)一系列復(fù)雜計(jì)算,得出反映實(shí)際問(wèn)題的最佳數(shù)學(xué)模型及模型最優(yōu)解。因此通過(guò)數(shù)學(xué)建?;顒?dòng)學(xué)生的視野將會(huì)得以拓寬,應(yīng)用意識(shí)、解決復(fù)雜問(wèn)題的能力也會(huì)得到增強(qiáng)和提高。
(三)加強(qiáng)數(shù)學(xué)建模教育有助于培養(yǎng)學(xué)生的創(chuàng)造性思維和創(chuàng)新能力
所謂創(chuàng)造力是指"對(duì)已積累的知識(shí)和經(jīng)驗(yàn)進(jìn)行科學(xué)地加工和創(chuàng)造,產(chǎn)生新概念、新知識(shí)、新思想的能力,大體上由感知力、記憶力、思考力、想象力四種能力所構(gòu)成".現(xiàn)今教育界認(rèn)為,創(chuàng)造力的培養(yǎng)是人才培養(yǎng)的關(guān)鍵,數(shù)學(xué)建?;顒?dòng)的各個(gè)環(huán)節(jié)無(wú)不充滿了創(chuàng)造性思維的挑戰(zhàn)。
很多不同的實(shí)際問(wèn)題,其數(shù)學(xué)模型可以是相同或相似的,這就要求學(xué)生在建模時(shí)觸類(lèi)旁通,挖掘不同事物間的本質(zhì),尋找其內(nèi)在聯(lián)系。而對(duì)一個(gè)具體的建模問(wèn)題,能否把握其本質(zhì)轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,是完成建模過(guò)程的關(guān)鍵所在。同時(shí)建模題材有較大的靈活性,沒(méi)有統(tǒng)一的標(biāo)準(zhǔn)答案,因此數(shù)學(xué)建模過(guò)程是培養(yǎng)學(xué)生創(chuàng)造性思維,提高創(chuàng)新能力的過(guò)程.
(四)加強(qiáng)數(shù)學(xué)建模教育有助于提高學(xué)生科技論文的撰寫(xiě)能力
數(shù)學(xué)建模的結(jié)果是以論文形式呈現(xiàn)的,如何將建模思想、建立的`模型、最優(yōu)解及其關(guān)鍵環(huán)節(jié)的處理在論文中清晰地表述出來(lái),對(duì)本科生來(lái)說(shuō)是一個(gè)挑戰(zhàn)。經(jīng)歷數(shù)學(xué)建模全過(guò)程的磨練,特別是數(shù)模論文的撰寫(xiě),學(xué)生的文字語(yǔ)言、數(shù)學(xué)表述能力及論文的撰寫(xiě)能力無(wú)疑會(huì)得到前所未有的提高。
(五)加強(qiáng)數(shù)學(xué)建模教育有助于增強(qiáng)學(xué)生的團(tuán)結(jié)合作精神并提高協(xié)調(diào)組織能力建模問(wèn)題通常較復(fù)雜,涉及的知識(shí)面也很廣,因此數(shù)學(xué)建模實(shí)踐活動(dòng)一般效仿正規(guī)競(jìng)賽的規(guī)則,三人為一隊(duì)在三天內(nèi)以論文形式完成建模題目。要較好地完成任務(wù),離不開(kāi)良好的組織與管理、分工與協(xié)作.
三、開(kāi)展數(shù)學(xué)建模教育及活動(dòng)的具體途徑和有效方法
(一)開(kāi)展數(shù)學(xué)建模課堂教學(xué)
即在課堂教學(xué)中,教師以具體的案例作為主要的教學(xué)內(nèi)容,通過(guò)具體問(wèn)題的建模,介紹建模的過(guò)程和思想方法及建模中要注意的問(wèn)題。案例教學(xué)法的關(guān)鍵在于把握兩個(gè)重要環(huán)節(jié):
案例的選取和課堂教學(xué)的組織。
教學(xué)案例一定要精心選取,才能達(dá)到預(yù)期的教學(xué)效果。其選取一般要遵循以下幾點(diǎn)。
1.代表性:案例的選取要具有科學(xué)性,能拓寬學(xué)生的知識(shí)面,突出數(shù)學(xué)建?;顒?dòng)重在培養(yǎng)興趣提高能力等特點(diǎn)。
2.原始性:來(lái)自媒體的信息,企事業(yè)單位的報(bào)告,現(xiàn)實(shí)生活和各學(xué)科中的問(wèn)題等等,都是數(shù)學(xué)建模問(wèn)題原始資料的重要來(lái)源。
3.創(chuàng)新性:案例應(yīng)注意選取在建模的某些環(huán)節(jié)上具有挑戰(zhàn)性,能激發(fā)學(xué)生的創(chuàng)造性思維,培養(yǎng)學(xué)生的創(chuàng)新精神和提高創(chuàng)造能力。
案例教學(xué)的課堂組織,一部分是教師講授,從實(shí)際問(wèn)題出發(fā),講清問(wèn)題的背景、建模的要求和已掌握的信息,介紹如何通過(guò)合理的假設(shè)和簡(jiǎn)化建立優(yōu)化的數(shù)學(xué)模型。還要強(qiáng)調(diào)如何用求解結(jié)果去解釋實(shí)際現(xiàn)象即檢驗(yàn)?zāi)P汀A硪徊糠质钦n堂討論,讓學(xué)生自由發(fā)言各抒己見(jiàn)并提出新的模型,簡(jiǎn)介關(guān)鍵環(huán)節(jié)的處理。最后教師做出點(diǎn)評(píng),提供一些改進(jìn)的方向,讓學(xué)生自己課外獨(dú)立探索和鉆研,這樣既突出了教學(xué)重點(diǎn),又給學(xué)生留下了進(jìn)一步思考的空間,既避免了教師的"滿堂灌",也活躍了課堂氣氛,提高了學(xué)生的課堂學(xué)習(xí)興趣和積極性,使傳授知識(shí)變?yōu)閷W(xué)習(xí)知識(shí)、應(yīng)用知識(shí),真正地達(dá)到提高素質(zhì)和培養(yǎng)能力的教學(xué)目的.
(二)開(kāi)展數(shù)模競(jìng)賽的專(zhuān)題培訓(xùn)指導(dǎo)工作
建立數(shù)學(xué)建模競(jìng)賽指導(dǎo)團(tuán)隊(duì),分專(zhuān)題實(shí)行教師負(fù)責(zé)制。每位教師根據(jù)自己的專(zhuān)長(zhǎng),負(fù)責(zé)講授某一方面的數(shù)學(xué)建模知識(shí)與技巧,并選取相應(yīng)地建模案例進(jìn)行剖析。如離散模型、連續(xù)模型、優(yōu)化模型、微分方程模型、概率模型、統(tǒng)計(jì)回歸模型及數(shù)學(xué)軟件的使用等。學(xué)生根據(jù)自己的薄弱點(diǎn),選擇適合的專(zhuān)題培訓(xùn)班進(jìn)行學(xué)習(xí),以彌補(bǔ)自己的不足。這種針對(duì)性的數(shù)模教學(xué),會(huì)極大地提高教學(xué)效率。
(三)建立數(shù)學(xué)建模網(wǎng)絡(luò)課程
以現(xiàn)代網(wǎng)絡(luò)技術(shù)為依托,建立數(shù)學(xué)建模課程網(wǎng)站,內(nèi)容包括:課程介紹,課程大綱,教師教案,電子課件,教學(xué)實(shí)驗(yàn),教學(xué)錄像,網(wǎng)上答疑等;還可以增加一些有關(guān)欄目,如歷年國(guó)內(nèi)外數(shù)模競(jìng)賽介紹,校內(nèi)競(jìng)賽,專(zhuān)家點(diǎn)評(píng),獲獎(jiǎng)心得交流;同時(shí)提供數(shù)模學(xué)習(xí)資源下載如講義,背景材料,歷年國(guó)內(nèi)外競(jìng)賽題,優(yōu)秀論文等。以此為學(xué)生提供良好的自主學(xué)習(xí)網(wǎng)絡(luò)平臺(tái),實(shí)現(xiàn)課堂教學(xué)與網(wǎng)絡(luò)教學(xué)的有機(jī)結(jié)合,達(dá)到有效地提高學(xué)生數(shù)學(xué)建模綜合應(yīng)用能力的目的。
(四)開(kāi)展校內(nèi)數(shù)學(xué)建模競(jìng)賽活動(dòng)
完全模擬全國(guó)大學(xué)生數(shù)模競(jìng)賽的形式規(guī)則:定時(shí)公布賽題,三人一組,只能隊(duì)內(nèi)討論,按時(shí)提交論文,之后指導(dǎo)教師、參賽同學(xué)集中討論,進(jìn)一步完善。筆者負(fù)責(zé)數(shù)學(xué)建模競(jìng)賽培訓(xùn)近20年,多年的實(shí)踐證明,每進(jìn)行一次這樣的訓(xùn)練,學(xué)生在建模思路、建模水平、使用軟件能力、論文書(shū)寫(xiě)方面就有大幅提高。多次訓(xùn)練之后,學(xué)生的建模水平更是突飛猛進(jìn),效果甚佳。
如20xx年我指導(dǎo)的隊(duì)榮獲全國(guó)高教社杯大學(xué)生數(shù)學(xué)建模競(jìng)賽的最高獎(jiǎng)---高教社杯獎(jiǎng),這是此賽設(shè)置的唯一一個(gè)名額,也是當(dāng)年從全國(guó)(包括香港)院校的約1萬(wàn)多個(gè)本科參賽隊(duì)中脫穎而出的。又如20xx年我校57隊(duì)參加全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽,43隊(duì)獲獎(jiǎng),獲獎(jiǎng)比例達(dá)75%,創(chuàng)歷年之最。
(五)鼓勵(lì)學(xué)生積極參加全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽、國(guó)際數(shù)學(xué)建模競(jìng)賽
全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽創(chuàng)辦于1992年,每年一屆,目前已成為全國(guó)高校規(guī)模最大的基礎(chǔ)性學(xué)科競(jìng)賽,國(guó)際大學(xué)生數(shù)學(xué)建模競(jìng)賽是世界上影響范圍最大的高水平大學(xué)生學(xué)術(shù)賽事。參加數(shù)學(xué)建模大賽可以激勵(lì)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,提高運(yùn)用數(shù)學(xué)及相關(guān)工具分析問(wèn)題解決問(wèn)題的綜合能力,開(kāi)拓知識(shí)面,培養(yǎng)創(chuàng)造精神及合作意識(shí)。
四、結(jié)束語(yǔ)
數(shù)學(xué)建模本身是一個(gè)創(chuàng)造性的思維過(guò)程,它是對(duì)數(shù)學(xué)知識(shí)的綜合應(yīng)用,具有較強(qiáng)的創(chuàng)新性,而高校數(shù)學(xué)教學(xué)改革的目的之一是要著力培養(yǎng)學(xué)生的創(chuàng)造性思維,提高學(xué)生的創(chuàng)新能力。因此應(yīng)將數(shù)學(xué)建模思想融入教學(xué)活動(dòng)中,通過(guò)不斷的數(shù)學(xué)建模教育和實(shí)踐培養(yǎng)學(xué)生的創(chuàng)新能力和應(yīng)用能力從而提高學(xué)生的基本素質(zhì)以適應(yīng)社會(huì)發(fā)展的要求。
數(shù)學(xué)建模論文篇十三
1、從應(yīng)用數(shù)學(xué)出發(fā)數(shù)學(xué)建模主要是通過(guò)運(yùn)用數(shù)學(xué)知識(shí)解決生活中遇到實(shí)際問(wèn)題的全過(guò)程。要讓數(shù)學(xué)建模思想與大學(xué)數(shù)學(xué)教學(xué)課程進(jìn)行有效的融合,最佳切入點(diǎn)就是課堂上把用數(shù)學(xué)解決生活中的實(shí)際問(wèn)題與教學(xué)內(nèi)容相融合,以應(yīng)用數(shù)學(xué)為導(dǎo)向,訓(xùn)練學(xué)生綜合運(yùn)用數(shù)學(xué)知識(shí)去刻畫(huà)實(shí)際問(wèn)題、提煉數(shù)學(xué)模型、處理實(shí)際數(shù)據(jù)、分析解決實(shí)際問(wèn)題的能力,培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)原理解決生活問(wèn)題的興趣和愛(ài)好。授課過(guò)程中,要改變以往單純地進(jìn)行課堂灌輸?shù)男袨?,多引入?yīng)用數(shù)學(xué)的內(nèi)容,通過(guò)師生互動(dòng)、課堂討論、小課題研究實(shí)踐等多種形式靈活多樣的教學(xué)方法,培養(yǎng)引導(dǎo)學(xué)生樹(shù)立應(yīng)用數(shù)學(xué)建模解決實(shí)際問(wèn)題的思想。
2、從數(shù)學(xué)實(shí)驗(yàn)做起要加強(qiáng)獨(dú)立學(xué)院學(xué)生進(jìn)行數(shù)學(xué)實(shí)驗(yàn)的行為,筆者認(rèn)為數(shù)學(xué)建模與數(shù)學(xué)實(shí)驗(yàn)有著密切的聯(lián)系,兩者都是從解決實(shí)際問(wèn)題出發(fā),當(dāng)前的大學(xué)生數(shù)學(xué)實(shí)驗(yàn)基本上是應(yīng)用數(shù)學(xué)軟件、數(shù)值計(jì)算、建立模型、過(guò)程演算和圖形顯示等一系列過(guò)程,因此進(jìn)行數(shù)學(xué)實(shí)驗(yàn)的全過(guò)程就是數(shù)學(xué)建模思想的啟發(fā)過(guò)程。但是我國(guó)的教育資源和教學(xué)方針限制了獨(dú)立學(xué)院學(xué)生的學(xué)習(xí)環(huán)境和學(xué)習(xí)資源,能夠進(jìn)行數(shù)學(xué)實(shí)驗(yàn)的條件還是有限的。即使個(gè)別有實(shí)驗(yàn)?zāi)芰Φ膶W(xué)校,也未能進(jìn)行充分利用,數(shù)學(xué)實(shí)驗(yàn)課的內(nèi)容隨意性較大,有些院校將其降格為軟件學(xué)習(xí)課程或初級(jí)算法課。根據(jù)調(diào)研,目前大部分獨(dú)立學(xué)院未開(kāi)設(shè)此類(lèi)課程,這是數(shù)學(xué)建模思想與大學(xué)數(shù)學(xué)教學(xué)課程融合的一大損失,不利于學(xué)生創(chuàng)新思維能力的提高。各校應(yīng)當(dāng)積極創(chuàng)造條件,把數(shù)學(xué)實(shí)驗(yàn)課設(shè)為大學(xué)數(shù)學(xué)的必修課,爭(zhēng)取設(shè)立數(shù)學(xué)建模選修課,并積極探索、逐步實(shí)現(xiàn)把數(shù)學(xué)建模的思想和方法融入大學(xué)數(shù)學(xué)的主干課程。
3、從計(jì)算機(jī)應(yīng)用切入數(shù)學(xué)是為理、工、經(jīng)、管、農(nóng)、醫(yī)、文等眾多學(xué)科服務(wù)的基礎(chǔ)工具,它在不同的領(lǐng)域因?yàn)閼?yīng)用程度不同而導(dǎo)致被重視的程度不同。但在當(dāng)今的信息化時(shí)代,計(jì)算機(jī)的廣泛應(yīng)用和計(jì)算技術(shù)的飛速發(fā)展,使科學(xué)計(jì)算和數(shù)值模擬已成為絕大多數(shù)學(xué)科的必要工具和常用手段。數(shù)學(xué)在不同學(xué)科領(lǐng)域有了共同的主題,即應(yīng)用數(shù)學(xué)建模,通過(guò)計(jì)算機(jī)對(duì)各自領(lǐng)域的科學(xué)研究、生活問(wèn)題等進(jìn)行模擬分析,這成為數(shù)學(xué)建模思想在跨學(xué)科領(lǐng)域交流和傳播的一個(gè)重要途徑。每個(gè)領(lǐng)域的教學(xué)可以計(jì)算機(jī)應(yīng)用為切入點(diǎn),讓數(shù)學(xué)建模思想與數(shù)學(xué)授課無(wú)縫結(jié)合,在提高學(xué)生掌握知識(shí)能力、挖掘培養(yǎng)創(chuàng)新思維的同時(shí),增加了大學(xué)數(shù)學(xué)課程內(nèi)容的豐富性、實(shí)用性,促進(jìn)教學(xué)手段變革和創(chuàng)新。因此,大學(xué)應(yīng)以適應(yīng)現(xiàn)代信息技術(shù)發(fā)展的形勢(shì)和學(xué)生將來(lái)的需求為契機(jī),加快改進(jìn)大學(xué)數(shù)學(xué)課程教學(xué)方式,把數(shù)學(xué)建模的思想和方法以及現(xiàn)代計(jì)算技術(shù)和計(jì)算工具盡快融入大學(xué)數(shù)學(xué)的主干課程當(dāng)中。
大學(xué)數(shù)學(xué)課程是大學(xué)工科各專(zhuān)業(yè)培養(yǎng)計(jì)劃中重要的公共基礎(chǔ)理論課,其目的在于培養(yǎng)工程技術(shù)人才所必備的數(shù)學(xué)素質(zhì),為培養(yǎng)我國(guó)現(xiàn)代化建設(shè)需要的高素質(zhì)人才服務(wù)。數(shù)學(xué)建模課程的必修化,要從能夠擴(kuò)充學(xué)生的知識(shí)結(jié)構(gòu),培養(yǎng)學(xué)生的創(chuàng)造性思維能力、抽象概括能力、邏輯推理能力、自學(xué)能力、分析問(wèn)題和解決問(wèn)題能力的角度出發(fā),建立適合獨(dú)立學(xué)院學(xué)生的數(shù)學(xué)建模教學(xué)內(nèi)容。日前獨(dú)立學(xué)院開(kāi)展數(shù)學(xué)建?;顒?dòng)涉及內(nèi)容較淺,缺少相應(yīng)的數(shù)學(xué)建模和數(shù)學(xué)實(shí)驗(yàn)方而的教材。筆者近幾年通過(guò)承擔(dān)此類(lèi)課題的研究,認(rèn)為應(yīng)該加強(qiáng)以下內(nèi)容的建設(shè):
。2、開(kāi)設(shè)選修課拓展知識(shí)領(lǐng)域,讓學(xué)生可以通過(guò)選修數(shù)學(xué)建模、運(yùn)籌學(xué)、開(kāi)設(shè)數(shù)學(xué)實(shí)驗(yàn)(介紹matlab、maple等計(jì)算軟件課程),增加建立和解答數(shù)學(xué)模型的方法和技巧。比如以前用的“文曲星”電子詞典里的貸款計(jì)算,就是一個(gè)典型的運(yùn)用數(shù)學(xué)模型方便百姓自己計(jì)算的應(yīng)用。這個(gè)模型單靠數(shù)學(xué)和經(jīng)濟(jì)學(xué)單方面的知識(shí)是不夠的,必須把數(shù)學(xué)與經(jīng)濟(jì)學(xué)聯(lián)系在一起,才能有效解決生活中的問(wèn)題。
3、積極組織學(xué)生開(kāi)展或是參加數(shù)學(xué)建模大賽比賽是各個(gè)選手充分發(fā)揮水平、展示自己智慧的途徑,也是數(shù)學(xué)建模思想傳播的最好手段。比賽可以讓各個(gè)選手發(fā)現(xiàn)自己的不足,尋找自身數(shù)學(xué)建模出發(fā)點(diǎn)的缺陷,通過(guò)交流,還可以拓展學(xué)生思維。因此,有必要積極組織學(xué)生參入初等數(shù)學(xué)知識(shí)可以解決的數(shù)學(xué)模型、線性規(guī)劃模型、指派問(wèn)題模型、存儲(chǔ)問(wèn)題模型、圖論應(yīng)用題等方面的模擬競(jìng)賽,通過(guò)參賽積累大量數(shù)學(xué)建模知識(shí),促進(jìn)數(shù)學(xué)建模在教學(xué)中扮演更重要的`角色。教師應(yīng)該對(duì)歷年的全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽真題進(jìn)行認(rèn)真的解讀分析,通過(guò)對(duì)有意義的題目,如20xx年的《葡萄酒的評(píng)價(jià)》、《太陽(yáng)能小屋的設(shè)計(jì)》,20xx年的《交巡警服務(wù)平臺(tái)的設(shè)置與調(diào)度車(chē)燈線光源的計(jì)算》、20xx年的《眼科病床的合理安排》等,與生活相關(guān)的例子進(jìn)行講解分析,提高學(xué)生對(duì)數(shù)學(xué)建模的興趣和對(duì)模型應(yīng)用的直觀的認(rèn)識(shí),實(shí)現(xiàn)學(xué)校應(yīng)用型人才的培養(yǎng)。
4、加快教育方式的轉(zhuǎn)變高等教育設(shè)立數(shù)學(xué)這門(mén)學(xué)科就是為了應(yīng)用服務(wù),內(nèi)容應(yīng)重點(diǎn)放在基本概念、定理、公式等在生活中的應(yīng)用上。而傳統(tǒng)的高等數(shù)學(xué),除了推導(dǎo)就是證明,因此,要對(duì)傳統(tǒng)內(nèi)容進(jìn)行優(yōu)化組合,根據(jù)教學(xué)特點(diǎn)和學(xué)生情況推陳出新,要注重?cái)?shù)學(xué)思想的滲透和數(shù)學(xué)方法的介紹,對(duì)高等數(shù)學(xué)精髓的求導(dǎo)、微分方法、積分方法等的授課要重點(diǎn)放在解決實(shí)際生活的應(yīng)用上。要結(jié)合一些社會(huì)實(shí)踐問(wèn)題與函數(shù)建立的關(guān)系,分析確定變量、參數(shù),加強(qiáng)有關(guān)函數(shù)關(guān)系式建立的日常訓(xùn)練。培養(yǎng)學(xué)生對(duì)一些問(wèn)題的邏輯分析、抽象、簡(jiǎn)化并用數(shù)學(xué)語(yǔ)言表達(dá)的能力,逐步將學(xué)生帶入遇到問(wèn)題就能自然地去轉(zhuǎn)化成數(shù)學(xué)模型進(jìn)行處理的境界,并能將數(shù)學(xué)結(jié)論又能很好反向轉(zhuǎn)化成實(shí)際應(yīng)用。
21世紀(jì)我國(guó)進(jìn)入了大眾教育時(shí)期,高校招生人數(shù)劇增,學(xué)生水平差距較大,需要學(xué)校瞄準(zhǔn)正確的培養(yǎng)方向。通過(guò)對(duì)美國(guó)教學(xué)改革的研究,筆者認(rèn)為我國(guó)的數(shù)學(xué)建模思想與大學(xué)數(shù)學(xué)教學(xué)課程融合必須盡快在大學(xué)中廣泛推進(jìn),但要注意一些問(wèn)題:第一,數(shù)學(xué)教學(xué)改革一定要基于學(xué)生的現(xiàn)實(shí)水平,數(shù)學(xué)建模思想融入要與時(shí)俱進(jìn)。第二,教學(xué)目標(biāo)要正確定位,融合過(guò)程一定要與教學(xué)研究相結(jié)合,要在加強(qiáng)交流的基礎(chǔ)上不斷改進(jìn)。第三,大學(xué)生數(shù)學(xué)建模競(jìng)賽的舉辦和參入,要給予正確的理解和引導(dǎo),形成良性循環(huán)。要根據(jù)個(gè)人興趣愛(ài)好,注重個(gè)性,不應(yīng)面面強(qiáng)求。第四,傳統(tǒng)數(shù)學(xué)思想與現(xiàn)在數(shù)學(xué)建模思想必須互補(bǔ),必修與選修課程的作用與角色要分清。數(shù)學(xué)主干課程的教學(xué)水平是大學(xué)教學(xué)質(zhì)量的關(guān)鍵指標(biāo)之一,具備數(shù)學(xué)建模思想是理工類(lèi)大學(xué)生能否成為創(chuàng)新人才的重要條件之一。兩者的融合必將促進(jìn)我國(guó)教學(xué)水平和質(zhì)量的提高,為社會(huì)輸送更多的實(shí)用型、創(chuàng)新型人才。
數(shù)學(xué)建模論文篇一
摘要:數(shù)學(xué)建模課堂中學(xué)生的自主探究、合作學(xué)習(xí)與教師的科學(xué)引導(dǎo)并不矛盾而是相輔相成的。只有在教師科學(xué)、適時(shí)、適當(dāng)?shù)匾龑?dǎo)下才能更好地突出學(xué)生的主體地位,從而打造出自主探究、合作學(xué)習(xí)、愉悅發(fā)展的高效數(shù)學(xué)建模課堂。
關(guān)鍵詞:數(shù)學(xué)建模;教師
一、新課的引入需要發(fā)揮教師的作用
教師在數(shù)學(xué)建模課堂上的引導(dǎo)作用首先體現(xiàn)在教師對(duì)新課的引入上。教師一段精彩的導(dǎo)入會(huì)點(diǎn)燃學(xué)生學(xué)習(xí)的熱情、激發(fā)學(xué)生的學(xué)習(xí)興趣、喚起學(xué)生的好奇心,能把學(xué)生的注意力迅速集中到要學(xué)的知識(shí)上來(lái)。這對(duì)提高教學(xué)質(zhì)量、提高學(xué)生的學(xué)習(xí)效果起著不可估量的作用。同時(shí),新課前的導(dǎo)入環(huán)節(jié)是對(duì)學(xué)生進(jìn)行情感教育的最佳時(shí)刻。學(xué)生只有在教師的引導(dǎo)下才能夠體會(huì)到數(shù)學(xué)建模的價(jià)值、增強(qiáng)學(xué)好數(shù)學(xué)建模的信心。俗話說(shuō):“好的開(kāi)始是成功的一半?!睌?shù)學(xué)建模課堂也是這樣。因此,在新課引入時(shí)要充分發(fā)揮教師的作用。
二、在教學(xué)任務(wù)的設(shè)計(jì)上需要發(fā)揮教師的作用
數(shù)學(xué)建模課堂一般應(yīng)采用任務(wù)型教學(xué)模式,是讓學(xué)生通過(guò)自主探究、合作學(xué)習(xí)、交流展示的方式完成一系列學(xué)習(xí)任務(wù)來(lái)達(dá)到特定的教學(xué)目標(biāo)和學(xué)習(xí)目標(biāo)。學(xué)生在課堂中的主體作用能否得到有效發(fā)揮取決于教師對(duì)問(wèn)題設(shè)計(jì)質(zhì)量的高低。教師應(yīng)通過(guò)設(shè)計(jì)一系列高質(zhì)量的問(wèn)題把復(fù)雜的數(shù)學(xué)建模問(wèn)題分解成若干簡(jiǎn)單問(wèn)題來(lái)引導(dǎo)學(xué)生更好地發(fā)揮其主動(dòng)性。學(xué)生也只有在這些問(wèn)題的正確引導(dǎo)下才能突破難點(diǎn)并向著學(xué)習(xí)目標(biāo)努力,有效防止學(xué)生思考、探究、交流的內(nèi)容偏離學(xué)習(xí)目標(biāo)等現(xiàn)象的出現(xiàn)。這些任務(wù)的制訂需要充分發(fā)揮教師的作用。
三、在新舊知識(shí)的聯(lián)系點(diǎn)上需要發(fā)揮教師的作用
建構(gòu)主義強(qiáng)調(diào)新知識(shí)是在學(xué)生已有知識(shí)的基礎(chǔ)上通過(guò)學(xué)生自身有意義的建構(gòu)獲得的。筆者認(rèn)為,學(xué)生自主建構(gòu)知識(shí)應(yīng)在教師的科學(xué)引導(dǎo)下進(jìn)行。尤其是對(duì)于數(shù)學(xué)建模這樣高難度的知識(shí)更是這樣。失去了教師的科學(xué)引導(dǎo),學(xué)生易產(chǎn)生疲倦感,久而久之會(huì)喪失學(xué)習(xí)數(shù)學(xué)建模的興趣和信心。因此,在新舊知識(shí)聯(lián)系點(diǎn)上應(yīng)發(fā)揮教師的作用。教師應(yīng)在準(zhǔn)確掌握教學(xué)目標(biāo)、難點(diǎn)的基礎(chǔ)上,充分考慮學(xué)生的認(rèn)知能力、習(xí)慣、思維方式,通過(guò)有針對(duì)性的具體問(wèn)題喚起學(xué)生對(duì)舊知識(shí)的回憶,再通過(guò)啟發(fā)性問(wèn)題引導(dǎo)學(xué)生去發(fā)現(xiàn)新知識(shí),從而實(shí)現(xiàn)溫故知新的目的。在教師引領(lǐng)下學(xué)生自主建構(gòu)知識(shí)可以使學(xué)生少走彎路,從而使學(xué)生更加高效地自主探究、掌握新知識(shí)。
四、在教學(xué)重點(diǎn)、難點(diǎn)上需要教師的引導(dǎo)
教學(xué)的重點(diǎn)、難點(diǎn)是每一節(jié)課的核心和主線,只有準(zhǔn)確把握了重點(diǎn)、突破了難點(diǎn)才能更好地掌握本節(jié)課的內(nèi)容。在強(qiáng)調(diào)學(xué)生自主探究、小組合作學(xué)習(xí)的課堂教學(xué)模式中,數(shù)學(xué)建模教材的重點(diǎn)、難點(diǎn)學(xué)生往往把握不準(zhǔn)、難以突破。這就需要教師科學(xué)引導(dǎo)學(xué)生主動(dòng)去發(fā)現(xiàn)重點(diǎn)、突破難點(diǎn)。教師引導(dǎo)學(xué)生發(fā)現(xiàn)重點(diǎn)、突破難點(diǎn)并不是讓教師直接告訴學(xué)生本節(jié)課的重點(diǎn)是什么、怎樣突破難點(diǎn),而是通過(guò)具體問(wèn)題的引導(dǎo)讓學(xué)生自己找到重點(diǎn)、并通過(guò)學(xué)生自己的思考、討論解決疑難問(wèn)題。學(xué)生在教師的引導(dǎo)下通過(guò)自己的努力、討論解決了疑難后,學(xué)生會(huì)非常興奮,從而會(huì)越來(lái)越喜歡數(shù)學(xué)建模課。相反,在沒(méi)有教師引導(dǎo)的數(shù)學(xué)建模課堂中,學(xué)生經(jīng)常被困難嚇倒,從而對(duì)數(shù)學(xué)建模課產(chǎn)生畏懼感。由此可見(jiàn),教師對(duì)學(xué)生的科學(xué)引導(dǎo)是學(xué)生學(xué)好數(shù)學(xué)建模必不可少的環(huán)節(jié)。在以學(xué)生為本、注重學(xué)生全面發(fā)展、提倡課堂中突出學(xué)生主體地位的背景下,教師的引導(dǎo)仍是數(shù)學(xué)建模課堂中不可缺失的要素。數(shù)學(xué)建模課堂中學(xué)生的自主探究、合作學(xué)習(xí)與教師的科學(xué)引導(dǎo)并不矛盾而是相輔相成的。只有在教師科學(xué)、適時(shí)、適當(dāng)?shù)匾龑?dǎo)下才能更好地突出學(xué)生的主體地位,從而打造出自主探究、合作學(xué)習(xí)、愉悅發(fā)展的高效數(shù)學(xué)建模課堂。
數(shù)學(xué)建模論文篇二
使學(xué)生的綜合應(yīng)用能力、實(shí)踐創(chuàng)新能力和綜合應(yīng)用素質(zhì)等多方面均能得到提升和發(fā)展。
對(duì)于醫(yī)學(xué)專(zhuān)業(yè)的學(xué)生來(lái)說(shuō),在校所學(xué)的數(shù)學(xué)基礎(chǔ)理論課程比較有限,并且學(xué)生對(duì)純粹的數(shù)學(xué)知識(shí)與復(fù)雜的理論推導(dǎo)已經(jīng)極為厭倦,如果數(shù)學(xué)建模還是以傳統(tǒng)的“灌輸式”和教師“主導(dǎo)型”為主、簡(jiǎn)單的應(yīng)用案例為主要教學(xué)內(nèi)容的話,其結(jié)果勢(shì)必會(huì)使學(xué)生有一種再講數(shù)學(xué)課和做應(yīng)用題的感覺(jué),既不能很好地激發(fā)學(xué)生的學(xué)習(xí)興趣,也不能體現(xiàn)數(shù)學(xué)建模的思想方法和本質(zhì)特色。
因此,如何使學(xué)生擺脫這種尷尬的現(xiàn)狀已成為我們教學(xué)的一大難點(diǎn)。針對(duì)這種情況,在教學(xué)模式上,我們大膽嘗試研究型教學(xué)模式,即采用“從實(shí)踐中來(lái),到實(shí)踐中去”的教學(xué)理念。一方面,從最現(xiàn)實(shí)、最熱門(mén)的醫(yī)學(xué)話題出發(fā),從學(xué)生最感興趣的.問(wèn)題入手,激發(fā)學(xué)生的學(xué)習(xí)興趣和進(jìn)一步學(xué)習(xí)的主動(dòng)性,使他們從一開(kāi)始就能進(jìn)入到學(xué)習(xí)的角色中去;另一方面,通過(guò)開(kāi)展多種方式的實(shí)踐教學(xué)活動(dòng),使學(xué)生在實(shí)踐中掌握數(shù)學(xué)建模的常用方法和基本技能,忽略繁瑣的數(shù)學(xué)推導(dǎo)過(guò)程,讓學(xué)生體會(huì)發(fā)現(xiàn)問(wèn)題和思考問(wèn)題的過(guò)程,培養(yǎng)學(xué)生解決問(wèn)題的創(chuàng)新能力。
近些年來(lái),我們開(kāi)設(shè)的醫(yī)藥數(shù)學(xué)建模課受到了學(xué)生的一致好評(píng),其關(guān)鍵之處在于我們一改傳統(tǒng)的教學(xué)模式,通過(guò)組織數(shù)學(xué)建模興趣研討班,讓每位同學(xué)都能充分地參與到研究中去并且使每位學(xué)生都有發(fā)言的機(jī)會(huì)。這些舉措旨在進(jìn)一步激發(fā)學(xué)生的創(chuàng)新意識(shí),提高學(xué)生的數(shù)學(xué)建模實(shí)踐能力。研討班面向全校各類(lèi)醫(yī)學(xué)專(zhuān)業(yè)的學(xué)生,并以三人為單位,劃分成若干個(gè)組,通過(guò)專(zhuān)題研討的形式開(kāi)展活動(dòng)。實(shí)踐證明:通過(guò)這種研討過(guò)程,學(xué)生不僅對(duì)所學(xué)的醫(yī)學(xué)知識(shí)有了更深刻的理解與認(rèn)識(shí),在文獻(xiàn)資料查閱、計(jì)算機(jī)編程、語(yǔ)言表達(dá)能力等諸多方面也都有了顯著的提高。通過(guò)這個(gè)過(guò)程的學(xué)習(xí),為學(xué)生今后從事醫(yī)學(xué)科研工作打下了良好的基礎(chǔ)。
為了有效的培養(yǎng)學(xué)生綜合應(yīng)用能力和深層次學(xué)習(xí)的習(xí)慣與意識(shí),我們?cè)诮虒W(xué)方法上一改往日的“講透,講懂”的方法,忽略純理論的繁瑣推導(dǎo),突出知識(shí)的應(yīng)用思想和應(yīng)用意識(shí),讓學(xué)生帶著問(wèn)題上課,嘗試在解決問(wèn)題中與教師進(jìn)行交流,下課帶著問(wèn)題回去。
在課堂教學(xué)中,重點(diǎn)講解發(fā)現(xiàn)問(wèn)題和解決問(wèn)題的方法與技巧。通過(guò)課前作業(yè),引導(dǎo)學(xué)生自我發(fā)現(xiàn)問(wèn)題;通過(guò)課堂講解和研討,引導(dǎo)學(xué)生解決問(wèn)題;通過(guò)課后作業(yè),總結(jié)和鞏固所學(xué)知識(shí),學(xué)習(xí)應(yīng)用與拓展知識(shí)。這種完全以學(xué)生為主,教師為輔的做法,有利于培養(yǎng)學(xué)生樹(shù)立勇于探索求知的信心和探索新知識(shí)的能力與意識(shí),提高學(xué)生的創(chuàng)新能力和敏銳的洞察力及想象力,從而提升學(xué)生的綜合應(yīng)用素質(zhì)。
在現(xiàn)實(shí)生活中的實(shí)際問(wèn)題是比較復(fù)雜的,往往單一的方法是難以解決的,通常是需要多種方法的綜合應(yīng)用方能解決。
因此,以實(shí)際問(wèn)題驅(qū)動(dòng)的教學(xué)模式,主要是引導(dǎo)學(xué)生如何將復(fù)雜的實(shí)際問(wèn)題分解為一系列簡(jiǎn)單的小問(wèn)題,在解決每一個(gè)小問(wèn)題的過(guò)程中,讓學(xué)生學(xué)習(xí)并掌握相關(guān)的數(shù)學(xué)知識(shí)與方法。這種在應(yīng)用中學(xué)習(xí)的教學(xué)方法,在很大程度上解決了學(xué)生普遍存在的“學(xué)數(shù)學(xué)有什么用、學(xué)了數(shù)學(xué)不知怎么用”的困惑。
在整個(gè)教學(xué)過(guò)程中,貫穿以學(xué)生為主體,通過(guò)案例分析引導(dǎo)學(xué)生的思維方法,針對(duì)一個(gè)案例的解決過(guò)程和方法,要求實(shí)現(xiàn)舉一反三,促使學(xué)生對(duì)所掌握的知識(shí)進(jìn)行重組再現(xiàn)和優(yōu)化構(gòu)建,讓學(xué)生在學(xué)習(xí)和問(wèn)題的解決中學(xué)會(huì)不斷地總結(jié)與歸納,用成功的方法再去演繹解決新的問(wèn)題,通過(guò)不斷地歸納演繹、對(duì)比分析、總結(jié)經(jīng)驗(yàn)、彌補(bǔ)不足,進(jìn)一步學(xué)習(xí)相關(guān)知識(shí)和方法,再進(jìn)行實(shí)踐,從而不斷增強(qiáng)自身的綜合應(yīng)用能力和素質(zhì)。
隨著醫(yī)學(xué)院校教育理念的轉(zhuǎn)變以及教育體制改革的深入,對(duì)培養(yǎng)適應(yīng)科學(xué)技術(shù)迅速發(fā)展的創(chuàng)新型醫(yī)學(xué)人才提出了更高的要求。如何培養(yǎng)出具有創(chuàng)新能力、綜合素質(zhì)高的專(zhuān)業(yè)人才已成為亟待解決的問(wèn)題之一。本文探討了醫(yī)藥數(shù)學(xué)建模課程的開(kāi)設(shè)對(duì)培養(yǎng)大學(xué)生實(shí)踐創(chuàng)新能力的幾點(diǎn)做法。教學(xué)實(shí)踐證明:數(shù)學(xué)建模課充分鍛煉了學(xué)生的各項(xiàng)能力,是提高醫(yī)學(xué)專(zhuān)業(yè)學(xué)生綜合應(yīng)用素質(zhì)行之有效的方法。
數(shù)學(xué)建模論文篇三
對(duì)于高職院校的學(xué)生來(lái)講,數(shù)學(xué)在其教學(xué)過(guò)程中起著基礎(chǔ)性的作用,對(duì)于學(xué)生后續(xù)的學(xué)習(xí)相當(dāng)關(guān)鍵。但是從現(xiàn)階段高職院校數(shù)學(xué)教學(xué)的基本情況來(lái)看,數(shù)學(xué)教師的教學(xué)方法以及教學(xué)策略都相當(dāng)落后,對(duì)于學(xué)生數(shù)學(xué)興趣的提升造成了不同程度的影響。在這樣的背景下,相關(guān)專(zhuān)家提出了數(shù)學(xué)建模的方式,希望以此提升高職院校高等數(shù)學(xué)的教學(xué)效率。本文結(jié)合數(shù)學(xué)建模在高職高專(zhuān)人才培養(yǎng)當(dāng)中的意義和作用入手,對(duì)于其中的應(yīng)用策略進(jìn)行全面的分析,希望為相關(guān)單位提供一個(gè)全面的參考。
數(shù)學(xué)建模;思想;高等教學(xué)
隨著我國(guó)社會(huì)的發(fā)展,經(jīng)濟(jì)產(chǎn)業(yè)結(jié)構(gòu)日益升級(jí),因此高等院校的人才需求日益擴(kuò)大,對(duì)于高職教育的發(fā)展提供了前所未有的契機(jī)。在這樣的背景下,從數(shù)學(xué)建模入手,將其思想融入到高等教育的數(shù)學(xué)教學(xué)當(dāng)中,對(duì)于其中的策略和方法進(jìn)行全面的研究應(yīng)該是一項(xiàng)具有普遍現(xiàn)實(shí)意義的工作。
從近些年的發(fā)展來(lái)看,參加過(guò)數(shù)學(xué)競(jìng)賽的學(xué)生在科研能力等方面都具有比其他同學(xué)更強(qiáng)的優(yōu)勢(shì),因此數(shù)學(xué)建模在提升學(xué)生創(chuàng)新能力、提高學(xué)生知識(shí)水平以及調(diào)動(dòng)學(xué)生的.學(xué)習(xí)興趣都具有十分重要的意義。比如在解決實(shí)際問(wèn)題的時(shí)候,數(shù)學(xué)建模通過(guò)利用各種技巧,可以使得學(xué)生分析問(wèn)題、創(chuàng)造能力得以全面的提升,進(jìn)而使得學(xué)生在摒棄原始思考問(wèn)題方式的基礎(chǔ)上,敢于向傳統(tǒng)的知識(shí)發(fā)出挑戰(zhàn),對(duì)于學(xué)生的綜合能力的全面提升相當(dāng)關(guān)鍵。其次,數(shù)學(xué)知識(shí)本就源于生活,因此在建模的基礎(chǔ)上學(xué)生就可以帶著問(wèn)題去思考,這對(duì)于數(shù)學(xué)知識(shí)整體性的發(fā)揮以及解決問(wèn)題能力的提升都具有十分重要的意義。最后,面對(duì)傳統(tǒng)數(shù)學(xué)的解決方式,很多學(xué)生望而生畏,因此主動(dòng)分析問(wèn)題的欲望就會(huì)受到遏制。在這樣的背景下,通過(guò)數(shù)學(xué)建模方式,學(xué)生會(huì)發(fā)現(xiàn)數(shù)學(xué)方法的靈活性,進(jìn)而使得他們解決問(wèn)題的能力得以全面的提升。
3.1制定切實(shí)可行的教學(xué)大綱,從而使得教學(xué)進(jìn)度得以保障。教學(xué)大綱在高職教學(xué)當(dāng)中起著十分重要的作用,這對(duì)于教學(xué)內(nèi)容的合理性以及提升學(xué)生學(xué)習(xí)的針對(duì)性都具有十分重要的意義[1]。比如在教學(xué)高等數(shù)學(xué)(一)的選修模塊時(shí),教學(xué)大綱的制定應(yīng)該結(jié)合學(xué)生的專(zhuān)業(yè),從而使得學(xué)生的數(shù)學(xué)學(xué)習(xí)真正取得實(shí)效。比如可以為理工類(lèi)的學(xué)生選擇無(wú)窮級(jí)數(shù)以及傅里葉變換的內(nèi)容;機(jī)械類(lèi)的學(xué)生選擇線性代數(shù)以及解析幾何作為教學(xué)內(nèi)容,從而使得學(xué)生的綜合能力得以全面的提升。3.2開(kāi)展“三段式”的教學(xué)模式。數(shù)學(xué)建模在以解決實(shí)際問(wèn)題為核心的過(guò)程中,使得學(xué)生分析問(wèn)題以及組織問(wèn)題的能力得以全面的提升,這種方式的本質(zhì)為素質(zhì)教育,因此不能和現(xiàn)行的其他教學(xué)模式分割開(kāi)來(lái),這就需要相關(guān)部門(mén)開(kāi)展“三段式”的教學(xué)模式,使得學(xué)生的數(shù)學(xué)興趣得以全面的提升。其中,第一段需要還原數(shù)學(xué)知識(shí)的原創(chuàng)過(guò)程,使得學(xué)生明確數(shù)學(xué)知識(shí)的產(chǎn)生過(guò)程,進(jìn)而讓學(xué)生從生活案例當(dāng)中發(fā)現(xiàn)數(shù)學(xué)的價(jià)值,比如知道極限是由人影的長(zhǎng)度變化引起的,導(dǎo)數(shù)是由于駕車(chē)的速度引入的,使得學(xué)生發(fā)現(xiàn)知識(shí)的價(jià)值,進(jìn)而就會(huì)大大提升自己的學(xué)習(xí)興趣和探究意識(shí)。第二段:講解數(shù)學(xué)知識(shí)。數(shù)學(xué)建模是在實(shí)際問(wèn)題當(dāng)中引入的,因此要通過(guò)具體數(shù)學(xué)知識(shí)的講解使得學(xué)生明確數(shù)學(xué)建模的真正價(jià)值,比如在講解微積分的過(guò)程中,可以以“極限-微分-積分”為主線,使得學(xué)生對(duì)于數(shù)學(xué)的分析能力真正得以提升[2]。然后在為學(xué)生積極引入大量數(shù)學(xué)圖表的基礎(chǔ)上,為增強(qiáng)學(xué)生的感性認(rèn)識(shí),進(jìn)而提升學(xué)生的綜合能力奠定堅(jiān)實(shí)的基礎(chǔ)。第三段:數(shù)學(xué)知識(shí)的運(yùn)用。隨著社會(huì)的發(fā)展,數(shù)學(xué)的應(yīng)用在各行各業(yè)都發(fā)揮出巨大的作用,因此對(duì)于高等數(shù)學(xué)在實(shí)際生活當(dāng)中發(fā)揮出來(lái)的作用進(jìn)行全面的探究是實(shí)現(xiàn)這種知識(shí)價(jià)值的真正途徑。在這樣的背景下,高等數(shù)學(xué)教師要將每個(gè)知識(shí)點(diǎn)的運(yùn)用真正灌輸給學(xué)生,比如指數(shù)增長(zhǎng)在銀行計(jì)息當(dāng)中的應(yīng)用、定積分在學(xué)習(xí)曲線當(dāng)中的應(yīng)用、再生資源在數(shù)學(xué)開(kāi)發(fā)以及管理當(dāng)中的應(yīng)用等等。從而使得學(xué)生數(shù)學(xué)學(xué)習(xí)中的創(chuàng)新意識(shí)以及應(yīng)用能力得以全面的提升。3.3開(kāi)設(shè)數(shù)學(xué)實(shí)驗(yàn),提升學(xué)生的綜合素質(zhì)。數(shù)學(xué)建模為學(xué)生提供了一種真正的“數(shù)學(xué)實(shí)驗(yàn)”,在這種實(shí)驗(yàn)的過(guò)程中,學(xué)生對(duì)于數(shù)學(xué)知識(shí)的發(fā)展以及由來(lái)過(guò)程都會(huì)得到進(jìn)行全面的考慮,這對(duì)于他們數(shù)學(xué)探索意識(shí)的提升具有十分重要的意義。另外,在計(jì)算機(jī)輔助實(shí)驗(yàn)的過(guò)程中,學(xué)生的動(dòng)腦能力也會(huì)得到全面的提升,這對(duì)于學(xué)生主動(dòng)的學(xué)習(xí)數(shù)學(xué)相當(dāng)關(guān)鍵。因此在教學(xué)過(guò)程中,教師要積極利用這種方式對(duì)于學(xué)生進(jìn)行全面的培養(yǎng)。
總之,隨著我國(guó)經(jīng)濟(jì)水平的不斷提升,社會(huì)對(duì)于高職院校的重視力度日益提升,因此對(duì)于高職院校當(dāng)中數(shù)學(xué)建模思想在高等數(shù)學(xué)教學(xué)當(dāng)中的應(yīng)用進(jìn)行全面的分析是實(shí)現(xiàn)學(xué)生綜合素質(zhì)得以全面提升的關(guān)鍵措施,這對(duì)于學(xué)生的長(zhǎng)遠(yuǎn)發(fā)展也相當(dāng)關(guān)鍵,相關(guān)教育工作者要加大在這方面的研究力度,力求將高職院校的學(xué)生培養(yǎng)成為新時(shí)代所需要的人才。
[1]吳健輝,黃志堅(jiān),汪龍虎.對(duì)數(shù)學(xué)建模思想融入高等數(shù)學(xué)教學(xué)中的探討[j].景德鎮(zhèn)高專(zhuān)學(xué)報(bào),20xx,(4).
[2]張卓飛.將數(shù)學(xué)建模思想融入大學(xué)數(shù)學(xué)教學(xué)的探討[j].湘潭師范學(xué)院學(xué)報(bào)(自然科學(xué)版),20xx,(1).
數(shù)學(xué)建模論文篇四
數(shù)學(xué),源于人們對(duì)生產(chǎn)與生活實(shí)際問(wèn)題,抽象出的數(shù)量關(guān)系與空間結(jié)構(gòu)發(fā)展而成的.近年來(lái),信息技術(shù)飛速發(fā)展,推動(dòng)了應(yīng)用數(shù)學(xué)的發(fā)展,使數(shù)學(xué)日益滲透到社會(huì)各個(gè)領(lǐng)域.中考實(shí)際應(yīng)用題目更貼近日常生活,具有時(shí)代性、靈活性,涉及的模型有方程、函數(shù)、不等式、統(tǒng)計(jì)、幾何等模型.數(shù)學(xué)課程標(biāo)準(zhǔn)指出,教師在教學(xué)中應(yīng)引導(dǎo)學(xué)生從實(shí)際背景中理清數(shù)學(xué)關(guān)系、把握變化規(guī)律,能從實(shí)際問(wèn)題中建立數(shù)學(xué)模型.教師要為學(xué)生創(chuàng)造用數(shù)學(xué)的氛圍,引導(dǎo)學(xué)生參與自主學(xué)習(xí)、自主探索、自主提問(wèn)、自主解決,體驗(yàn)做數(shù)學(xué)的過(guò)程,從而提高解決實(shí)際問(wèn)題的能力.
一、影響數(shù)學(xué)建模教學(xué)的成因探析
一是教師未能實(shí)現(xiàn)角色轉(zhuǎn)換.建模教學(xué)離不開(kāi)學(xué)生“做”數(shù)學(xué)的過(guò)程,因而教師在教學(xué)中要留有讓學(xué)生思考、想象的空間,讓他們自主選擇方法.然而部分教師對(duì)學(xué)生缺乏信任,由“引導(dǎo)者”變?yōu)椤肮噍斦摺?,將解題過(guò)程直接教給學(xué)生,影響了學(xué)生建模能力的提高.二是教師的專(zhuān)業(yè)素養(yǎng)有待提高.開(kāi)展建模教學(xué),需要教師具有一定的專(zhuān)業(yè)素養(yǎng),能駕馭課堂教學(xué),激發(fā)學(xué)生的興趣,啟發(fā)學(xué)生進(jìn)行思考,誘發(fā)學(xué)生進(jìn)行探索,但是部分教師專(zhuān)業(yè)素養(yǎng)有待提高,或認(rèn)為建模就是解應(yīng)用題,或重生活味輕數(shù)學(xué)味,或使討論活動(dòng)流于形式.三是學(xué)生的抽象能力較差.在建模教學(xué)中,教師須呈現(xiàn)生活中的實(shí)際問(wèn)題,其題目長(zhǎng)、信息量大、數(shù)據(jù)多,需要學(xué)生經(jīng)歷閱讀提取有用的信息,但是部分學(xué)生感悟能力差,不能明析已知與未知之間的關(guān)系,影響了學(xué)生成功建模.
二、數(shù)學(xué)建模教學(xué)的有效原則
1.自主探索原則.
學(xué)生長(zhǎng)期處于師講、生聽(tīng)的教學(xué)模式,淪為被動(dòng)接受知識(shí)的“容器”,難有創(chuàng)造的意識(shí).在教學(xué)中,教師要為學(xué)生創(chuàng)設(shè)輕松愉悅的探究氛圍,讓學(xué)生手腦并用,在探索、交流、操作中提高解決問(wèn)題的`能力.
2.因材施教原則.
教師要著眼于學(xué)生原有的認(rèn)知結(jié)構(gòu),要貼近學(xué)生的最近發(fā)展區(qū),引導(dǎo)他們從舊知的角度思考,找出問(wèn)題的解決方法。
3.可接受性原則.
數(shù)學(xué)建模內(nèi)容的設(shè)計(jì),要符合學(xué)生的年齡特點(diǎn)和認(rèn)知能力,能讓學(xué)生理解所探究的內(nèi)容.若設(shè)計(jì)的問(wèn)題不切實(shí)際,往往會(huì)扼殺學(xué)生的興趣,教師要密切聯(lián)系教學(xué)內(nèi)容、生活實(shí)際,讓學(xué)生有能力解決問(wèn)題.
數(shù)學(xué)建模論文篇五
大量的應(yīng)用型技能型人才,有效滿足了社會(huì)各行各業(yè)的用工需求。隨著國(guó)家對(duì)高職教育的重視和不斷投入,提高教育的教學(xué)質(zhì)量勢(shì)在必行[1]。數(shù)學(xué)建模的核心是以數(shù)學(xué)模型為基礎(chǔ)的實(shí)際運(yùn)用,鑒于數(shù)學(xué)建模的這種特點(diǎn),國(guó)內(nèi)高職數(shù)學(xué)教育逐步把數(shù)學(xué)建模理念融入到課題教學(xué)中,提高學(xué)生的應(yīng)用能力。以數(shù)學(xué)建模理念的告知書(shū)明確教學(xué)改革要求學(xué)生結(jié)合計(jì)算機(jī)技術(shù),靈活運(yùn)用數(shù)學(xué)的思想和方法獨(dú)立地分析和解決問(wèn)題,不僅能培養(yǎng)學(xué)生的探索精神和創(chuàng)新意識(shí),而且能培養(yǎng)學(xué)生團(tuán)結(jié)協(xié)作、不怕困難、求實(shí)嚴(yán)謹(jǐn)?shù)淖黠L(fēng)[2]。筆者結(jié)合自身的教學(xué)工作經(jīng)驗(yàn),對(duì)基于數(shù)學(xué)建模理念的高職數(shù)學(xué)教學(xué)改革進(jìn)行了探索,對(duì)教學(xué)實(shí)踐中出現(xiàn)的問(wèn)題進(jìn)行了分析梳理,以期為高職數(shù)學(xué)教學(xué)改革提供新思路,推動(dòng)高職數(shù)學(xué)教學(xué)水平的不斷提高,培養(yǎng)出具有良好數(shù)學(xué)素養(yǎng)和專(zhuān)業(yè)技能的新型高職人才。
近年來(lái),隨著國(guó)內(nèi)產(chǎn)業(yè)結(jié)構(gòu)的不斷調(diào)整,對(duì)于高等職業(yè)技術(shù)人才需求不斷增大,社會(huì)對(duì)高等職業(yè)技術(shù)教育寄予厚望。但是傳統(tǒng)的高職教育由于專(zhuān)業(yè)設(shè)置不合理,使用教材落后,實(shí)訓(xùn)實(shí)踐場(chǎng)地不足,培養(yǎng)出的學(xué)生動(dòng)手能力差、專(zhuān)業(yè)能力不足,面對(duì)社會(huì)發(fā)展的新形勢(shì),高職教育必須進(jìn)行教學(xué)改革,提高學(xué)生的職業(yè)能力和就業(yè)競(jìng)爭(zhēng)力。高職教育不同于普通本科教育,它有以下幾方面的特點(diǎn)。
1人才培養(yǎng)目標(biāo)不同
高職教育和本科教育人才培養(yǎng)目標(biāo)不同,高職教育是以技術(shù)應(yīng)用型高技能人才為培養(yǎng)目標(biāo),所有的教學(xué)課程設(shè)計(jì)和人才培養(yǎng)體系設(shè)計(jì)都是基于此目標(biāo)展開(kāi)的,高職教育主要是為了向產(chǎn)業(yè)發(fā)展提供生產(chǎn)、服務(wù)、管理等一線工作的高級(jí)技術(shù)應(yīng)用型人才,專(zhuān)業(yè)能力培養(yǎng)和目標(biāo)職業(yè)匹配度高,所以高職教育教學(xué)成果最直接的評(píng)價(jià)就是畢業(yè)生的就業(yè)競(jìng)爭(zhēng)力和上崗后的適應(yīng)能力。
2兩者的教學(xué)內(nèi)容不同
高職教育的教學(xué)重點(diǎn)是學(xué)生要掌握與實(shí)踐工作關(guān)系較為密切的業(yè)務(wù)處理能力、動(dòng)手能力與交流能力,把學(xué)生的職業(yè)能力建設(shè)列為教學(xué)重點(diǎn),課程設(shè)計(jì)專(zhuān)業(yè)性強(qiáng),一旦就業(yè)能為企業(yè)創(chuàng)造明顯的效益,高職教育各專(zhuān)業(yè)課程差別較大。
3生源情況不同
在當(dāng)前的教育教學(xué)體系下,高職教育的生源普遍較差,大多是沒(méi)有希望考上大學(xué),轉(zhuǎn)而進(jìn)入高職學(xué)習(xí),希望通過(guò)掌握一定的技術(shù)來(lái)實(shí)現(xiàn)就業(yè),所以高職學(xué)生的基礎(chǔ)知識(shí)普遍較差,學(xué)習(xí)興趣不高。數(shù)學(xué)建模給高職數(shù)學(xué)教學(xué)改革開(kāi)辟了新思路,數(shù)學(xué)建模為數(shù)學(xué)理論學(xué)習(xí)和工程實(shí)踐應(yīng)用搭建了橋梁,在工學(xué)結(jié)合的基本原則下,采取數(shù)學(xué)建模教學(xué)理念,培養(yǎng)學(xué)生的數(shù)學(xué)素養(yǎng)及動(dòng)手應(yīng)用能力是一個(gè)非常有效的手段[3]。
1數(shù)學(xué)建模的概念數(shù)學(xué)建模是將數(shù)學(xué)理論和現(xiàn)實(shí)問(wèn)題相結(jié)合的一門(mén)科學(xué),它將實(shí)際問(wèn)題抽象、歸納成為相應(yīng)的數(shù)學(xué)模型,在此基礎(chǔ)上應(yīng)用數(shù)學(xué)概念、數(shù)學(xué)定理、數(shù)學(xué)方法等手段研究處理實(shí)際問(wèn)題,從定性或者定理的角度給出科學(xué)的結(jié)果[4]。數(shù)學(xué)建模的發(fā)展為數(shù)學(xué)知識(shí)的應(yīng)用提供了途徑,對(duì)于現(xiàn)實(shí)中的特點(diǎn)問(wèn)題,可以用數(shù)學(xué)語(yǔ)言來(lái)描述其內(nèi)在規(guī)律和問(wèn)題,運(yùn)用數(shù)學(xué)研究的成果,結(jié)合計(jì)算機(jī)專(zhuān)業(yè)軟件,通過(guò)抽象、簡(jiǎn)化、假設(shè)、引進(jìn)變量等處理過(guò)程后,將實(shí)際問(wèn)題用數(shù)學(xué)方式表達(dá),轉(zhuǎn)化成為數(shù)學(xué)問(wèn)題,借助數(shù)學(xué)思想建立起數(shù)學(xué)模型,從而解決實(shí)際問(wèn)題。2基于數(shù)學(xué)建模思想的教學(xué)理念基于數(shù)學(xué)建模的這種學(xué)科特點(diǎn),可以把數(shù)學(xué)知識(shí)應(yīng)用化,因此,基于數(shù)學(xué)建模思想的教學(xué)理念可以概括為三個(gè)層次:首先,確立提高學(xué)生數(shù)學(xué)應(yīng)用能力為目標(biāo),以提高學(xué)生數(shù)學(xué)學(xué)習(xí)興趣為手段,以學(xué)習(xí)數(shù)學(xué)建模為途徑;其次,結(jié)合教學(xué)內(nèi)容,開(kāi)發(fā)相應(yīng)的數(shù)學(xué)建模案例,因地制宜、因生制宜,根據(jù)專(zhuān)業(yè)不同編寫(xiě)相應(yīng)的校本教材;最后,改進(jìn)教學(xué)方法,創(chuàng)新課堂教學(xué)模式,建立課外數(shù)學(xué)建模學(xué)習(xí)興趣小組,帶領(lǐng)學(xué)生進(jìn)行數(shù)學(xué)應(yīng)用實(shí)踐活動(dòng),鼓勵(lì)學(xué)生參加各種數(shù)學(xué)建模競(jìng)賽[5]。
傳統(tǒng)的數(shù)學(xué)教學(xué)模式以教師課堂講授為中心,學(xué)生只能被動(dòng)的接受,由于學(xué)生的基礎(chǔ)知識(shí)水平不同,掌握新知識(shí)的能力也不同,這種沒(méi)有區(qū)分的教學(xué)模式教學(xué)效果差,往往帶來(lái)的結(jié)果是造成基礎(chǔ)差的學(xué)生跟不上,對(duì)數(shù)學(xué)感興趣的學(xué)生失去興趣?;跀?shù)學(xué)建模理念的高職數(shù)學(xué)教學(xué)改革,是以學(xué)生數(shù)學(xué)應(yīng)用能力提高為目標(biāo),以數(shù)學(xué)學(xué)習(xí)興趣培養(yǎng)為出發(fā)點(diǎn),以數(shù)學(xué)建模為途徑,以教學(xué)方式改革為保障,打造高職數(shù)學(xué)教學(xué)改革新模式,全面提高高職教育應(yīng)用型人才培養(yǎng)水平。
1結(jié)合專(zhuān)業(yè)特色,突出數(shù)學(xué)教育的應(yīng)用性
數(shù)學(xué)作為高職教育的基礎(chǔ)性學(xué)科,理論性強(qiáng),體系性強(qiáng),對(duì)于基礎(chǔ)知識(shí)薄弱、學(xué)習(xí)興趣差的高職生來(lái)說(shuō)感覺(jué)難學(xué)、枯燥,這是因?yàn)楦呗殧?shù)學(xué)教育沒(méi)有教會(huì)學(xué)生如何在專(zhuān)業(yè)學(xué)習(xí)中和以后的工作中如何去用學(xué)到的數(shù)學(xué)知識(shí),學(xué)生感覺(jué)知識(shí)無(wú)用自然也就不會(huì)主動(dòng)去學(xué),之所以引入數(shù)學(xué)建模的思想就是為了讓學(xué)生利用學(xué)到的數(shù)學(xué)知識(shí)去解決實(shí)際問(wèn)題,讓學(xué)生認(rèn)識(shí)到數(shù)學(xué)不只是紙面上的寫(xiě)寫(xiě)算算,數(shù)學(xué)可以把實(shí)際問(wèn)題抽象化,變成數(shù)學(xué)問(wèn)題,利用數(shù)學(xué)的研究方法給實(shí)際問(wèn)題進(jìn)行科學(xué)的指導(dǎo),這樣高職數(shù)學(xué)教育就不再是課堂上的照本宣科,課下的演算作業(yè),將基礎(chǔ)數(shù)學(xué)教育和學(xué)生的專(zhuān)業(yè)教育相結(jié)合,帶來(lái)學(xué)生用數(shù)學(xué)解決專(zhuān)業(yè)問(wèn)題是大幅度提高學(xué)生專(zhuān)業(yè)能力的有效途徑。
2結(jié)合學(xué)生能力,因材施教、因地制宜
高職學(xué)校的生源不如普通高校,一般學(xué)習(xí)基礎(chǔ)較差,對(duì)于專(zhuān)業(yè)實(shí)訓(xùn)課并不明顯,但是在基礎(chǔ)學(xué)科教學(xué)過(guò)程特別突出,很多基礎(chǔ)知識(shí)掌握不牢,甚至一點(diǎn)印象都沒(méi)有,教師在上課時(shí)要充分考慮到這種情況,在課堂授課時(shí)給予實(shí)時(shí)的補(bǔ)充,以助于知識(shí)的過(guò)渡。因材施教是我國(guó)傳統(tǒng)的教育思想,在掌握學(xué)生知識(shí)水平的基礎(chǔ)上,教師要根據(jù)不同學(xué)習(xí)層次學(xué)生的具體情況,安排教學(xué)內(nèi)容和設(shè)置教學(xué)目標(biāo),對(duì)于基礎(chǔ)知識(shí)水平不高、學(xué)習(xí)興趣較差、學(xué)習(xí)能力較弱的學(xué)生要進(jìn)行課外輔導(dǎo)。高職基礎(chǔ)課教育是專(zhuān)業(yè)課學(xué)習(xí)的基礎(chǔ),授課教師要根據(jù)學(xué)生的專(zhuān)業(yè)學(xué)習(xí)情況和專(zhuān)業(yè)特點(diǎn),把遷移知識(shí)運(yùn)用能力在課堂上結(jié)合學(xué)生的專(zhuān)業(yè)背景進(jìn)行輔導(dǎo),高職數(shù)學(xué)教育不僅僅是為了學(xué)習(xí)數(shù)學(xué),更多的是發(fā)揮數(shù)學(xué)知識(shí)在其專(zhuān)業(yè)能力培養(yǎng)中的作用。
3培養(yǎng)學(xué)生學(xué)習(xí)興趣,促進(jìn)整體教學(xué)質(zhì)量提高
高職學(xué)校的學(xué)生學(xué)習(xí)興趣普遍不高,尤其是對(duì)于學(xué)了十幾年都感覺(jué)頭痛的數(shù)學(xué),要想提高數(shù)學(xué)的教學(xué)質(zhì)量,首先必須要培養(yǎng)學(xué)生的學(xué)習(xí)興趣,長(zhǎng)期以來(lái)學(xué)生在數(shù)學(xué)學(xué)習(xí)上已經(jīng)有了根深蒂固的認(rèn)識(shí),培養(yǎng)數(shù)學(xué)學(xué)習(xí)興趣很難,但是如果學(xué)生沒(méi)有學(xué)習(xí)興趣,教師授課內(nèi)容、授課方式改革都起不了太大的作用,學(xué)生對(duì)于數(shù)學(xué)學(xué)習(xí)興趣低由于低年級(jí)學(xué)習(xí)時(shí)受到的挫敗感,因此要讓學(xué)生建立學(xué)習(xí)數(shù)學(xué)的自信心,讓他們體驗(yàn)學(xué)會(huì)數(shù)學(xué)的成就感,這樣才能逐步培養(yǎng)他們的學(xué)習(xí)興趣。教師可以采取以點(diǎn)帶面的方式,先選擇有一定基礎(chǔ)的學(xué)生,再?gòu)娜空n程學(xué)習(xí)中發(fā)現(xiàn)表現(xiàn)優(yōu)秀的個(gè)體,組織參加建模競(jìng)賽,進(jìn)行單獨(dú)賽前加強(qiáng)指導(dǎo),用這些榜樣的力量提高全體同學(xué)的學(xué)習(xí)積極性。數(shù)學(xué)建模作為提高高職數(shù)學(xué)教育教學(xué)水平的“點(diǎn)”,能夠以其趣味性強(qiáng),帶動(dòng)學(xué)生的學(xué)習(xí)興趣,促進(jìn)高職數(shù)學(xué)教育教學(xué)水平的全面提高。
4改革教學(xué)及評(píng)價(jià)方式,建立面向應(yīng)用的數(shù)學(xué)教育體系
由于基于數(shù)學(xué)建模思想的高職數(shù)學(xué)教學(xué)改革打破了以往的課堂教學(xué)方式和考核方式,學(xué)生面對(duì)的不再是期末的一張?jiān)嚲?,而是一個(gè)個(gè)數(shù)學(xué)建模案例,需要學(xué)生運(yùn)用本學(xué)期學(xué)到的數(shù)學(xué)知識(shí)解決實(shí)際問(wèn)題,教師根據(jù)學(xué)生對(duì)案例的理解程度,數(shù)學(xué)模型運(yùn)用能力,實(shí)際過(guò)程分析和解題技巧等多方面給出評(píng)價(jià),同時(shí)積極評(píng)價(jià)、鼓勵(lì)學(xué)生的創(chuàng)新思維,并將其納入到考核體系當(dāng)中。通過(guò)以上各個(gè)方面評(píng)價(jià)的加權(quán)作為最后的評(píng)價(jià)指標(biāo)。這種以數(shù)學(xué)知識(shí)應(yīng)用為基礎(chǔ),直接面向應(yīng)用的高職數(shù)學(xué)教育模式能極大的激發(fā)學(xué)生的學(xué)習(xí)積極性和知識(shí)應(yīng)用能力,符合高職應(yīng)用型人才培養(yǎng)理念,對(duì)提高高職學(xué)生的專(zhuān)業(yè)能力也打下了堅(jiān)實(shí)的基礎(chǔ)?;跀?shù)學(xué)建模理念的高職數(shù)學(xué)教學(xué)改革是推動(dòng)高職應(yīng)用型人才培養(yǎng)體系建設(shè)的新舉措,也是推動(dòng)高職基礎(chǔ)課教學(xué)水平的重要內(nèi)容,能有效解決學(xué)生學(xué)習(xí)興趣低,基礎(chǔ)知識(shí)掌握不牢,數(shù)學(xué)知識(shí)應(yīng)用能力低等問(wèn)題,通過(guò)“案例驅(qū)動(dòng)法+討論法”,引導(dǎo)學(xué)生再次對(duì)課本知識(shí)進(jìn)行思考和應(yīng)用,有利于培養(yǎng)學(xué)生的創(chuàng)新思維和應(yīng)用能力。引入數(shù)學(xué)建模理念教學(xué),把課堂學(xué)習(xí)的主動(dòng)權(quán)交回給學(xué)生,既保證了高等數(shù)學(xué)原有的知識(shí)體系的完整,也可以提高教學(xué)效率。通過(guò)教學(xué)方式和評(píng)價(jià)方式改革,學(xué)生的學(xué)習(xí)主動(dòng)性增強(qiáng),也改變了以往對(duì)于數(shù)學(xué)學(xué)習(xí)的學(xué)習(xí)態(tài)度。高等數(shù)學(xué)作為高職教育學(xué)生必修的基礎(chǔ)課,在培養(yǎng)學(xué)生基本數(shù)學(xué)素養(yǎng)上具有重要作用,是理工類(lèi)專(zhuān)業(yè)課程體系的重要組成部分,基于數(shù)學(xué)建模理念的高職數(shù)學(xué)教學(xué)改革也為同類(lèi)基礎(chǔ)理論課改革提供了新思路和范例。
[1]孫麗.在高職數(shù)學(xué)教學(xué)改革中應(yīng)注重?cái)?shù)學(xué)建模思想的滲透[j].科技資訊,20xx(22):188.
數(shù)學(xué)建模論文篇六
1.1提高學(xué)生的語(yǔ)言和文字表達(dá)能力
1.2提高學(xué)生發(fā)現(xiàn)問(wèn)題和應(yīng)用計(jì)算機(jī)的能力
1.3培養(yǎng)學(xué)生自主團(tuán)結(jié)協(xié)作的團(tuán)隊(duì)精神
1.4培養(yǎng)學(xué)生的創(chuàng)新能力
2學(xué)生數(shù)學(xué)建模能力的培養(yǎng)措施
2.1在教學(xué)中注重滲透數(shù)學(xué)建模思想
2.2開(kāi)設(shè)數(shù)學(xué)建模公選課
2.3利用課外實(shí)踐活動(dòng)提升數(shù)學(xué)建模影響力
數(shù)學(xué)建模論文篇七
問(wèn)題教學(xué)法是一種新的教學(xué)模式,與傳統(tǒng)教學(xué)有很大的區(qū)別。在傳統(tǒng)的教學(xué)中,教師考慮最多的是“教什么、怎樣教”的問(wèn)題,很少顧及學(xué)生“學(xué)什么、怎樣學(xué)”,限制了學(xué)生學(xué)習(xí)的主動(dòng)性和創(chuàng)造性。[1]為了改變這種現(xiàn)狀,美國(guó)神經(jīng)病學(xué)教授howardbarrows于1969年創(chuàng)立了基于問(wèn)題和項(xiàng)目的學(xué)習(xí)(problembasedlearning)理念教學(xué)法。[2]這種方法不像傳統(tǒng)教學(xué)模式那樣先學(xué)習(xí)理論知識(shí)再解決問(wèn)題,而是讓學(xué)生圍繞問(wèn)題尋求解決方案。它強(qiáng)調(diào)讓學(xué)生置身于復(fù)雜的、有意義的問(wèn)題情境中,并讓學(xué)生成為該問(wèn)題情境的主體,自己去分析問(wèn)題,學(xué)習(xí)解決該問(wèn)題所需的知識(shí),進(jìn)而通過(guò)合作解決問(wèn)題。此外,教師在該過(guò)程中也可以通過(guò)提問(wèn)的方式,不斷地激發(fā)學(xué)生去思考、探索,培養(yǎng)學(xué)生自主學(xué)習(xí)的能力。與傳統(tǒng)的教學(xué)模式相比,問(wèn)題教學(xué)模式更注重對(duì)學(xué)生自學(xué)能力、創(chuàng)新能力、發(fā)現(xiàn)問(wèn)題和解決問(wèn)題能力的培養(yǎng)。問(wèn)題教學(xué)模式剛開(kāi)始主要被應(yīng)用于醫(yī)學(xué)、市場(chǎng)營(yíng)銷(xiāo)、實(shí)驗(yàn)教學(xué)、畢業(yè)論文的寫(xiě)作等領(lǐng)域。[3]近年來(lái),一些學(xué)者開(kāi)始探索將這種教學(xué)模式引入到“數(shù)學(xué)建?!闭n程的教學(xué)中。黃河科技學(xué)院從20xx級(jí)信息與計(jì)算科學(xué)專(zhuān)業(yè)的學(xué)生開(kāi)始,在“數(shù)學(xué)建?!苯虒W(xué)活動(dòng)引入問(wèn)題教學(xué)模式,已經(jīng)取得了初步的成效。
1.教師提出問(wèn)題
教師在每次上課之前要精心設(shè)計(jì)適合學(xué)生自學(xué)的問(wèn)題體系,目的是為了誘導(dǎo)學(xué)生的思維,激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生置身于特定的問(wèn)題環(huán)境中,營(yíng)造一種質(zhì)疑、探究、討論、和諧互動(dòng)的學(xué)習(xí)氛圍。這一步驟要求教師不僅需要熟悉教學(xué)內(nèi)容,還必須更好地了解學(xué)生的實(shí)際情況,這是成功實(shí)施問(wèn)題教學(xué)模式的基礎(chǔ)。
2.積極分析問(wèn)題
問(wèn)題教學(xué)法的基本特點(diǎn)是教學(xué)環(huán)節(jié)由一連串問(wèn)題組成,并且問(wèn)題與問(wèn)題之間的`聯(lián)系具有鏈接性和層次性。前一個(gè)問(wèn)題是后一個(gè)問(wèn)題的鋪墊,后一個(gè)問(wèn)題又是前一個(gè)問(wèn)題的深化和拓展。在學(xué)生熟悉了相關(guān)知識(shí)的基礎(chǔ)上,根據(jù)給出的實(shí)際問(wèn)題,教師引導(dǎo)學(xué)生進(jìn)行探索。探索活動(dòng)一般包括自學(xué)教材、觀察實(shí)驗(yàn)、小組討論等方式。學(xué)生一方面要充分利用原有認(rèn)知結(jié)構(gòu)中存儲(chǔ)的有關(guān)知識(shí)信息,另一方面可以利用教材、實(shí)驗(yàn)或教師提供的閱讀材料,獲取解決問(wèn)題的方法。在對(duì)問(wèn)題討論中教師要?jiǎng)?chuàng)設(shè)和諧民主的教學(xué)環(huán)境,要讓學(xué)生充分發(fā)表自己的見(jiàn)解,大膽質(zhì)疑,相互答辯,相互啟發(fā)。
3.解決問(wèn)題
當(dāng)所有學(xué)生都對(duì)問(wèn)題的解決方案有了一定的思路之后,教師組織課堂發(fā)言。讓每一小組推薦一位表達(dá)能力強(qiáng)的學(xué)生,在課堂上把他們對(duì)解決問(wèn)題的方法及結(jié)論的合理性進(jìn)行講解。在每組講解完之后,其他學(xué)生可以對(duì)他們進(jìn)行提問(wèn),而發(fā)言小組的學(xué)生要向其他同學(xué)和老師進(jìn)行解釋。教師在主持和引導(dǎo)的同時(shí),也可以向?qū)W生提問(wèn)。這樣通過(guò)對(duì)一個(gè)又一個(gè)問(wèn)題的提問(wèn),推動(dòng)學(xué)生思考,將問(wèn)題引向縱深層次,一步步朝著解決問(wèn)題的方向發(fā)展。
4.對(duì)問(wèn)題的結(jié)果進(jìn)行評(píng)價(jià)
問(wèn)題教學(xué)法不僅以問(wèn)題為開(kāi)端,還以問(wèn)題為終結(jié)。教學(xué)的最終結(jié)果不是傳授知識(shí)來(lái)消滅問(wèn)題,而是在解決已有問(wèn)題的基礎(chǔ)上引發(fā)更多、更廣泛的問(wèn)題。因此教師在對(duì)問(wèn)題的結(jié)果進(jìn)行總結(jié)時(shí)要注意引導(dǎo)學(xué)生反思“這個(gè)問(wèn)題為什么要這樣解決”,“這個(gè)問(wèn)題還可以怎樣解決”,“從解決這個(gè)問(wèn)題中我學(xué)到了什么”以及“這種解決方案還有什么不足之處”等等,從而激發(fā)他們提出新的問(wèn)題,這是問(wèn)題教學(xué)中最重要、最有教益的一個(gè)方面。
在基于問(wèn)題教學(xué)的過(guò)程中,每次討論的問(wèn)題都圍繞某一專(zhuān)題進(jìn)行討論學(xué)習(xí),下面以“公平的席位分配問(wèn)題”[4]為例,說(shuō)明在“數(shù)學(xué)建?!敝腥绾芜\(yùn)用問(wèn)題教學(xué)法。
1.合理設(shè)計(jì)問(wèn)題
獎(jiǎng)學(xué)金評(píng)定是學(xué)生比較關(guān)心的問(wèn)題,筆者根據(jù)學(xué)生的興趣及認(rèn)知水平選擇“獎(jiǎng)學(xué)金名額分配問(wèn)題”。設(shè)某校有5個(gè)系a、b、c、d、e,各系學(xué)生數(shù)分別為345、72、894、68、39,現(xiàn)在有74個(gè)獎(jiǎng)學(xué)金名額,問(wèn)每個(gè)系分配幾個(gè)名額比較公平?[5]在給出問(wèn)題后,我們將相關(guān)問(wèn)題印發(fā)給學(xué)生,并讓學(xué)生課下先收集關(guān)于“公平的席位分配問(wèn)題”的模型及相關(guān)求解方法并認(rèn)真研讀。
2.小組討論分析問(wèn)題
根據(jù)課下學(xué)生收集的求解方案,上課時(shí)首先以小組為單位初步討論。首先提出如果讓同學(xué)們進(jìn)行分配的話,他們會(huì)使用什么方法進(jìn)行分配,讓他們進(jìn)行討論。學(xué)生首先會(huì)給出比例分配方案,如果按人數(shù)比例分配到各系的名額恰好都是整數(shù),可以得到完全公平的分配方案。但在很多情況下,按人數(shù)比例分配到各系的名額帶有小數(shù)。比如在這個(gè)問(wèn)題中各系分配的名額數(shù)分別為:18.00、3.76、46.65、3.55、2.04,有小數(shù)部分。可以先把整數(shù)分配完,這時(shí)各系分配的名額數(shù)為:18、3、46、3、2。共分配了72名額,還有2個(gè)名額該如何分配?大家經(jīng)過(guò)討論,會(huì)提出誰(shuí)的小數(shù)部分大就把名額給誰(shuí)的分配方案,于是第73個(gè)名額給b系,第74個(gè)名額給c系。最終的方案是各系名額數(shù)分別為:18、4、47、3、2。接著老師會(huì)提出下面的問(wèn)題,這種分配方案對(duì)誰(shuí)最不公平?學(xué)生會(huì)進(jìn)一步討論每個(gè)名額代表的人數(shù),a為19.17人,b為18人,c為19.02人,d為22.67人,e為19.5人,說(shuō)明這種分配方案對(duì)d系最不公平,而b系最占便宜,兩個(gè)系中每個(gè)名額代表的人數(shù)相差了4.67人。那么要重點(diǎn)討論有沒(méi)有相對(duì)來(lái)說(shuō)比較公平的席位分配方案。
3.學(xué)生進(jìn)行發(fā)言討論
在所有小組都討論完之后,教師組織各組學(xué)生進(jìn)行課堂發(fā)言和討論,讓每組選一人報(bào)告本小組討論結(jié)果。教師對(duì)各組的報(bào)告進(jìn)行評(píng)價(jià),指出在討論過(guò)程中的問(wèn)題及不足之處。在這個(gè)問(wèn)題中,學(xué)生根據(jù)課下收集的文獻(xiàn)資料會(huì)逐步提出q值分配方案,q值分配方案的改進(jìn),q值+d’hondt分配方案,席位分配的平均公平度方案等等。每種方案都是前面方案的改進(jìn),最后我們提出問(wèn)題,這些分配方案公平度如何?讓學(xué)生逐一討論,從而營(yíng)造出一個(gè)討論主題鮮明、學(xué)習(xí)氛圍良好的課堂環(huán)境。
4.教師對(duì)結(jié)果進(jìn)行評(píng)價(jià)總結(jié)
在這個(gè)問(wèn)題中,經(jīng)過(guò)逐一討論,大部分學(xué)生認(rèn)為問(wèn)題已經(jīng)圓滿解決了,不會(huì)再對(duì)結(jié)果進(jìn)行歸納整理,不會(huì)反思問(wèn)題解決的思路。因此在最初的問(wèn)題解決后,老師要引導(dǎo)學(xué)生進(jìn)行評(píng)價(jià)總結(jié),比如:“各個(gè)方案的公平度如何”,“我們還有沒(méi)有更公平的分配方案”,“公平的席位分配方案應(yīng)滿足什么原則”等等。
從“公平的席位分配問(wèn)題”這個(gè)案例可以看到,在教學(xué)中為學(xué)生設(shè)計(jì)一個(gè)真實(shí)的問(wèn)題進(jìn)行教學(xué),學(xué)生可以通過(guò)真實(shí)問(wèn)題進(jìn)行學(xué)習(xí),并且以一個(gè)真實(shí)問(wèn)題的解決為主線,激發(fā)學(xué)生的學(xué)習(xí)興趣和探索精神,再通過(guò)結(jié)果反饋信息,引導(dǎo)學(xué)生逐步深入理解學(xué)習(xí)內(nèi)容。學(xué)生在研究問(wèn)題的過(guò)程中不僅學(xué)習(xí)了課本上的知識(shí),而且還親身體會(huì)了解決實(shí)際問(wèn)題的樂(lè)趣,為學(xué)生以后自主學(xué)習(xí)提供了極大的幫助。[6]四、結(jié)語(yǔ)當(dāng)然,在“數(shù)學(xué)建?!闭n程的教學(xué)過(guò)程中問(wèn)題教學(xué)模式也存在不足之處,比如課程內(nèi)容多、課時(shí)少,問(wèn)題討論時(shí)間和講授時(shí)間出現(xiàn)矛盾,對(duì)有的專(zhuān)題討論不夠深入,學(xué)生參與度不夠,學(xué)生發(fā)言的深度和廣度都有待于進(jìn)一步提高等等。這需要教師認(rèn)真歸納講課內(nèi)容,盡量分離出較多比較有吸引力的專(zhuān)題供學(xué)生討論,以問(wèn)題為中心規(guī)劃教學(xué)內(nèi)容,讓學(xué)生圍繞問(wèn)題尋求解決方案,從而提高學(xué)生學(xué)習(xí)的主動(dòng)性,提高學(xué)生在教學(xué)過(guò)程中的參與程度,激發(fā)學(xué)生的求知欲?!皵?shù)學(xué)建?!闭n程教學(xué)的本身就是一個(gè)不斷探索、創(chuàng)新和提高的過(guò)程,選擇正確有效的教學(xué)方法能更好培養(yǎng)學(xué)生的創(chuàng)新能力,激發(fā)學(xué)生對(duì)數(shù)學(xué)建模的興趣。
數(shù)學(xué)建模論文篇八
將建模的思想有效的滲透到應(yīng)用數(shù)學(xué)的教學(xué)過(guò)程中去,是我們當(dāng)前開(kāi)展應(yīng)用數(shù)學(xué)教育的未來(lái)發(fā)展趨勢(shì),怎樣才能夠使應(yīng)用數(shù)學(xué)更好的服務(wù)社會(huì)經(jīng)濟(jì)的發(fā)展,充分發(fā)揮數(shù)學(xué)工具在實(shí)際問(wèn)題解決中的重要作用,是我們當(dāng)前進(jìn)行應(yīng)用數(shù)學(xué)研究的核心問(wèn)題,而建模思想在應(yīng)用數(shù)學(xué)中的運(yùn)用則能夠很好的解決這一問(wèn)題。
數(shù)學(xué)教育至少應(yīng)該涵蓋純粹數(shù)學(xué)和應(yīng)用數(shù)學(xué)兩方面內(nèi)容,目前我國(guó)數(shù)學(xué)教育內(nèi)容以純粹數(shù)學(xué)為主,極少包括應(yīng)用數(shù)學(xué)內(nèi)容,這割裂了數(shù)學(xué)與外部世界的血肉聯(lián)系,使數(shù)學(xué)變成了多數(shù)學(xué)生眼中的抽象、枯燥、無(wú)用的思維游戲,而厭學(xué)成風(fēng)。因此,大家對(duì)現(xiàn)行的數(shù)學(xué)教育不滿意,期望改革,期望找到方法激發(fā)學(xué)生的學(xué)習(xí)興趣、培養(yǎng)學(xué)生利用數(shù)學(xué)解決各種實(shí)際問(wèn)題的能力。在不改變傳統(tǒng)的教學(xué)體系的前提下,有機(jī)地融入應(yīng)用數(shù)學(xué)內(nèi)容,應(yīng)是解決現(xiàn)存問(wèn)題的有效方法。事實(shí)上,數(shù)學(xué)發(fā)展的根本原動(dòng)力,它的最初的根源,是來(lái)自客觀實(shí)際的需要,數(shù)學(xué)教學(xué)中理應(yīng)突出數(shù)學(xué)思想的來(lái)龍去脈,揭示數(shù)學(xué)概念和公式的實(shí)際來(lái)源和應(yīng)用,恢復(fù)并暢通數(shù)學(xué)與外部世界的血肉聯(lián)系。伴隨著社會(huì)生產(chǎn)力的不斷發(fā)展,多個(gè)學(xué)科交叉發(fā)展,使得應(yīng)用數(shù)學(xué)逐漸發(fā)展成擁有眾多發(fā)展方向的學(xué)科,應(yīng)用數(shù)學(xué)所運(yùn)用的領(lǐng)域不斷延伸,已經(jīng)不再局限于傳統(tǒng)的、而是想著更為寬闊的、新興的學(xué)科以及高新技術(shù)領(lǐng)域發(fā)展,應(yīng)用數(shù)學(xué)目前已經(jīng)滲透到社會(huì)經(jīng)濟(jì)發(fā)展的各個(gè)行業(yè),在這一大背景下,應(yīng)用數(shù)學(xué)的研究者就擁有了極大的發(fā)展空間以及展示才能的舞臺(tái),也迎來(lái)了應(yīng)用數(shù)學(xué)發(fā)展的新機(jī)遇。
數(shù)學(xué)這一學(xué)科不僅具有概念抽象性、邏輯嚴(yán)密性、體系完整性以及結(jié)論確定性,而且還具備非常明顯的應(yīng)用廣泛性,伴隨著計(jì)算機(jī)網(wǎng)絡(luò)在社會(huì)生活中的廣泛運(yùn)用,人們對(duì)于實(shí)踐問(wèn)題的解決要求越來(lái)越精確,這就給應(yīng)用數(shù)學(xué)的廣泛運(yùn)用帶來(lái)了前所未有的機(jī)遇。應(yīng)用數(shù)學(xué)在這一背景下也已經(jīng)成為當(dāng)前高科技水平的一個(gè)重要內(nèi)容,應(yīng)用數(shù)學(xué)建模思想的引入與使用能夠極大的提升自身應(yīng)用數(shù)學(xué)的綜合水平以及思維意識(shí),開(kāi)展應(yīng)用數(shù)學(xué)建模不僅能夠有效的提升自己的學(xué)習(xí)熱情與探究意識(shí),而且還能夠?qū)?zhuān)業(yè)知識(shí)同建模密切結(jié)合在一起,對(duì)于專(zhuān)業(yè)知識(shí)的有效掌握是非常有益的。
3.1充分重視建模的橋梁作用
建模是實(shí)現(xiàn)數(shù)學(xué)知識(shí)與現(xiàn)實(shí)問(wèn)題相聯(lián)系的橋梁與紐帶,通過(guò)進(jìn)行建模能夠有效的`將實(shí)際問(wèn)題進(jìn)行簡(jiǎn)化。在這一轉(zhuǎn)化的過(guò)程中,應(yīng)當(dāng)深入實(shí)際進(jìn)行調(diào)查、收集相關(guān)數(shù)據(jù)信息,認(rèn)真分析對(duì)象的獨(dú)特特征及規(guī)律,構(gòu)建起反映實(shí)際問(wèn)題的數(shù)學(xué)關(guān)系,運(yùn)用數(shù)學(xué)理論進(jìn)行問(wèn)題的解決。這正是各個(gè)學(xué)科之間進(jìn)行有效聯(lián)系的結(jié)合點(diǎn),通過(guò)引進(jìn)建模思想,不僅能夠使我們有效掌握數(shù)學(xué)理論之外的實(shí)踐問(wèn)題,還能夠推動(dòng)創(chuàng)新意識(shí)的提升,因此,我們應(yīng)當(dāng)充分重視建模的作用。
3.2將建模的方法以及相關(guān)理論引入到數(shù)學(xué)教學(xué)中來(lái)
我國(guó)當(dāng)前數(shù)學(xué)課程教學(xué)體系的現(xiàn)狀包括高等數(shù)學(xué)、線性代數(shù)、概率論與數(shù)理統(tǒng)計(jì)等幾個(gè)部分。當(dāng)前應(yīng)用數(shù)學(xué)的發(fā)展,滿足這一學(xué)科的建設(shè)以及其他學(xué)科對(duì)這一學(xué)科的需要,教師在教學(xué)中應(yīng)當(dāng)將問(wèn)題的背景介紹清楚,并列出幾種解決方案,啟發(fā)學(xué)生進(jìn)行討論并構(gòu)建數(shù)學(xué)模型。學(xué)生們?cè)谡n堂上就能夠獲得更多的思考和討論的機(jī)會(huì),能夠充分調(diào)動(dòng)學(xué)生們的積極性,使其能夠立足實(shí)際進(jìn)行思考,這樣一來(lái)就形成了以實(shí)際問(wèn)題為基礎(chǔ)的數(shù)學(xué)建模教學(xué)特色。
3.3積極參加數(shù)學(xué)模型課等相關(guān)課程與活動(dòng)
數(shù)學(xué)應(yīng)用綜合性的實(shí)驗(yàn),要求我們掌握數(shù)學(xué)知識(shí)的綜合性運(yùn)用,做法是老師先講一些數(shù)學(xué)建模的一些應(yīng)用實(shí)例,然后學(xué)生上機(jī)實(shí)踐,強(qiáng)調(diào)學(xué)生的動(dòng)手實(shí)踐。數(shù)學(xué)實(shí)驗(yàn)課應(yīng)該說(shuō)是數(shù)學(xué)模型的輔助課程,主要培養(yǎng)我們的數(shù)學(xué)思維和創(chuàng)新能力,還應(yīng)當(dāng)組織一些建模比賽,不斷提升數(shù)學(xué)建模的綜合水平。
上述幾個(gè)部分的論述與分析,我們看到,在應(yīng)用數(shù)學(xué)中加強(qiáng)建模思想具有非常重要的意義,不僅需要在課堂學(xué)習(xí)過(guò)程中認(rèn)真掌握數(shù)學(xué)理論知識(shí),還應(yīng)當(dāng)深入了解數(shù)學(xué)理論在實(shí)際生活中的可用之處,盡可能的使應(yīng)用數(shù)學(xué)與自身所學(xué)專(zhuān)業(yè)相聯(lián)系,這樣,才能夠使應(yīng)用數(shù)學(xué)的能力與水平在日常實(shí)踐過(guò)程中得到提升。就當(dāng)前高等數(shù)學(xué)的現(xiàn)狀來(lái)看,加強(qiáng)創(chuàng)新意識(shí)以及將實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題能力的培養(yǎng),提升綜合運(yùn)用本專(zhuān)業(yè)知識(shí)以來(lái)解決實(shí)踐問(wèn)題的能力,使創(chuàng)新思維得到最大限度的發(fā)揮。
[1]余荷香,趙益民.數(shù)學(xué)建模在高職數(shù)學(xué)教學(xué)中的應(yīng)用研究[j].出國(guó)與就業(yè)(就業(yè)版),20xx(10).
[2]關(guān)淮海.培養(yǎng)數(shù)學(xué)建模思想與方法高職高專(zhuān)數(shù)學(xué)教改之趨勢(shì)[j].職大學(xué)報(bào),20xx(02).
[3]李傳欣.數(shù)學(xué)建模在工程類(lèi)專(zhuān)業(yè)數(shù)學(xué)教學(xué)中的應(yīng)用研究[j].中國(guó)科教創(chuàng)新導(dǎo)刊,20xx(35).
[4]李秀林.高等數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)建模的探討[j].吉林省教育學(xué)院學(xué)報(bào)(學(xué)科版),20xx(08).
[5]吳健輝,黃志堅(jiān),汪龍虎.對(duì)數(shù)學(xué)建模思想融入高等數(shù)學(xué)教.學(xué)中的探討[j].景德鎮(zhèn)高專(zhuān)學(xué)報(bào),20xx(04).
數(shù)學(xué)建模論文篇九
摘要:在新課改以后,要求教師要在教學(xué)中重視學(xué)生的主體地位,提升學(xué)生學(xué)習(xí)興趣,培養(yǎng)他們的自主學(xué)習(xí)能力。本文從小學(xué)數(shù)學(xué)教學(xué)過(guò)程中數(shù)學(xué)建模入手,對(duì)如何將數(shù)學(xué)建模運(yùn)用到學(xué)生解題過(guò)程中進(jìn)行了分析。
關(guān)鍵詞:小學(xué)數(shù)學(xué);建模;運(yùn)用
數(shù)學(xué)建模是指利用數(shù)學(xué)模型的形式去解決實(shí)際中遇到的問(wèn)題,換句話說(shuō),就是利用數(shù)學(xué)思維、數(shù)學(xué)方法解決各種數(shù)學(xué)問(wèn)題。數(shù)學(xué)建模是在新課程改革后出現(xiàn)的新概念,經(jīng)過(guò)一段時(shí)間的觀察我們可以發(fā)現(xiàn),數(shù)學(xué)建模的方法能夠有效的提高學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生的數(shù)學(xué)能力。這種方式能夠?qū)?fù)雜的數(shù)學(xué)問(wèn)題利用簡(jiǎn)單的方式找到解決方案,是提高小學(xué)數(shù)學(xué)課堂效率及課堂質(zhì)量的有效手段。小學(xué)數(shù)學(xué)是小學(xué)學(xué)習(xí)中的重要課程之一,也是培養(yǎng)學(xué)生數(shù)學(xué)思維的重要階段??梢哉f(shuō),小學(xué)數(shù)學(xué)的學(xué)習(xí)是學(xué)生學(xué)習(xí)數(shù)學(xué)的關(guān)鍵,對(duì)今后的學(xué)習(xí)起到極大的影響。因此,對(duì)于小學(xué)數(shù)學(xué)教師來(lái)說(shuō),不斷的完善教學(xué)手段,提高數(shù)學(xué)課堂質(zhì)量是教學(xué)工作中的重中之重。而數(shù)學(xué)建模就是為了解決數(shù)學(xué)在生活中的實(shí)際問(wèn)題,能夠讓學(xué)生感受到數(shù)學(xué)本身的魅力,培養(yǎng)他們的數(shù)學(xué)思維,提高數(shù)學(xué)學(xué)習(xí)能力,從而讓小學(xué)數(shù)學(xué)教學(xué)質(zhì)量也得到大幅度的提升。小學(xué)數(shù)學(xué)與數(shù)學(xué)建模之間有著密不可分的作用,兩者相互聯(lián)系、相互促進(jìn),如何有效的將數(shù)學(xué)建模運(yùn)用在小學(xué)數(shù)學(xué)教學(xué)過(guò)程中,是每個(gè)小學(xué)數(shù)學(xué)教師都值得思考的問(wèn)題。
一、培養(yǎng)學(xué)生數(shù)學(xué)建模意識(shí)
數(shù)學(xué)建模是為了解決數(shù)學(xué)中遇到的問(wèn)題,數(shù)學(xué)本身特別是小學(xué)數(shù)學(xué)也是一門(mén)較貼近學(xué)生生活的學(xué)科。因此在數(shù)學(xué)學(xué)習(xí)中,教師要首先培養(yǎng)學(xué)生的數(shù)學(xué)學(xué)習(xí)意識(shí),讓他們感受到數(shù)學(xué)與生活的緊密聯(lián)系,然后再引導(dǎo)學(xué)生用數(shù)學(xué)建模去解決遇到的問(wèn)題。在這一過(guò)程中,數(shù)學(xué)教師要注意以下兩個(gè)問(wèn)題:(一)在教學(xué)中一定要貼近學(xué)生的生活,課堂中所提出的問(wèn)題也必須要符合生活實(shí)際,讓學(xué)生對(duì)所學(xué)內(nèi)容感到親切。積極引導(dǎo)學(xué)生利用多種方式解決同一問(wèn)題,尤其是利用數(shù)學(xué)建模的方式,以達(dá)到培養(yǎng)他們的數(shù)學(xué)思維以及想象能力的目的。(二)在學(xué)生進(jìn)行數(shù)學(xué)建模的過(guò)程中要利用多鼓勵(lì)的方式調(diào)動(dòng)他們對(duì)數(shù)學(xué)學(xué)習(xí)的積極性,讓他們?cè)跀?shù)學(xué)建模中獲得成就感,增加自信心,以此來(lái)提高學(xué)生在今后學(xué)習(xí)中使用數(shù)學(xué)建模方法的熱情。
二、提高學(xué)生想象力,用數(shù)學(xué)建模簡(jiǎn)化問(wèn)題
對(duì)于小學(xué)生來(lái)說(shuō),他們的思維與其他年齡段相比極其活躍,擁有了豐富的想象力。在數(shù)學(xué)學(xué)習(xí)中,如果能將想象力與數(shù)學(xué)學(xué)習(xí)結(jié)合在一起,一定會(huì)得到意想不到的效果。教師可以根據(jù)小學(xué)生這一特點(diǎn),提高他們的想象力,然后再引導(dǎo)他們利用數(shù)學(xué)建模解決問(wèn)題,讓題目簡(jiǎn)單化。具體來(lái)說(shuō),就是在面對(duì)復(fù)雜的'數(shù)學(xué)問(wèn)題時(shí),教師可以先為學(xué)生創(chuàng)建教學(xué)情境,以這樣的方式提高學(xué)生的學(xué)習(xí)興趣,讓他們?cè)敢庵鲃?dòng)去深入的研究遇到的題目。之后教師再去對(duì)他們進(jìn)行引導(dǎo),讓他們能夠理解題目中所提問(wèn)題的含義,并能夠運(yùn)用他們的想象能力思考解決問(wèn)題的方式。最后再引導(dǎo)他們進(jìn)行數(shù)學(xué)建模,解決問(wèn)題。這樣的方式充分的利用了學(xué)生的想象能力,將所需解決的問(wèn)題簡(jiǎn)單化。
三、選擇合適的題目作為建模案例
在數(shù)學(xué)建模過(guò)程中,教師也要時(shí)刻牢記題目應(yīng)該貼近學(xué)生的生活,符合實(shí)際,并且具有一定的趣味性,讓他們有興趣投入到數(shù)學(xué)建模的過(guò)程中去,然后再反復(fù)練習(xí)之后達(dá)到提高他們建模能力的目的。在選擇數(shù)學(xué)建模案例時(shí)教師主要應(yīng)該注意以下兩點(diǎn):首先,教師在選擇建模案例時(shí)要盡量選擇比較典型的問(wèn)題,能夠讓學(xué)生在學(xué)習(xí)了該題目以后掌握這一類(lèi)的解題方法,達(dá)到小學(xué)數(shù)學(xué)教學(xué)的目的。所以,這就需要教師對(duì)題目進(jìn)行深入的分析,看是否在擁有趣味性、真實(shí)性的同時(shí)符合教學(xué)要求。其次,題目最好能夠擁有可變性,教師能夠通過(guò)對(duì)題目中已知條件的改變讓學(xué)生進(jìn)行不同方面的建模練習(xí),以此提高他們數(shù)學(xué)建模的能力。
四、引導(dǎo)學(xué)生主動(dòng)進(jìn)行數(shù)學(xué)建模
在教師經(jīng)過(guò)反復(fù)的教學(xué)后,學(xué)生都已經(jīng)擁有了基本的數(shù)學(xué)建模知識(shí),了解了數(shù)學(xué)建模過(guò)程,并且能夠在解題過(guò)程中簡(jiǎn)單的使用數(shù)學(xué)建模。此時(shí),教師在教學(xué)中就可以引導(dǎo)學(xué)生利用數(shù)學(xué)建模解決數(shù)學(xué)題目了。引導(dǎo)學(xué)生用數(shù)學(xué)建模方法解決數(shù)學(xué)問(wèn)題,就要在解題過(guò)程中多對(duì)學(xué)生進(jìn)行這一方面的鼓勵(lì),讓他們提高建模信心。在這一過(guò)程中,教師還可以嘗試讓學(xué)生之間利用合作的方式讓他們進(jìn)行數(shù)學(xué)建模方法的探討,并在探討的過(guò)程中吸取他人的經(jīng)驗(yàn),提高自己數(shù)學(xué)建模水平,同時(shí)這樣的方式能夠讓數(shù)學(xué)建模深入到每一個(gè)學(xué)生的心中,逐漸影響每一個(gè)學(xué)生的解題思路,讓他們能夠在解題過(guò)程中熟練運(yùn)用建模的方式,提高解題能力。數(shù)學(xué)建模的方法能夠有效的改變過(guò)去的傳統(tǒng)教學(xué)思路,增加學(xué)生對(duì)數(shù)學(xué)的學(xué)習(xí)興趣,提高數(shù)學(xué)解題能力。這種教學(xué)方法對(duì)于小學(xué)數(shù)學(xué)教師來(lái)說(shuō),值得不斷的探討研究,并應(yīng)用在教學(xué)中,以此提高數(shù)學(xué)課堂的教學(xué)效率和教學(xué)質(zhì)量。
數(shù)學(xué)建模論文篇十
3.3增強(qiáng)選擇數(shù)學(xué)模型的能力。
選擇數(shù)學(xué)模型是數(shù)學(xué)能力的反映。數(shù)學(xué)模型的建立有多種方法,怎樣選擇一個(gè)最佳的模型,體現(xiàn)數(shù)學(xué)能力的強(qiáng)弱。建立數(shù)學(xué)模型主要涉及到方程、函數(shù)、不等式、數(shù)列通項(xiàng)公式、求和公式、曲線方程等類(lèi)型。結(jié)合教學(xué)內(nèi)容,以函數(shù)建模為例,以下實(shí)際問(wèn)題所選擇的數(shù)學(xué)模型列表:
函數(shù)建模類(lèi)型實(shí)際問(wèn)題
一次函數(shù)成本、利潤(rùn)、銷(xiāo)售收入等
二次函數(shù)優(yōu)化問(wèn)題、用料最省問(wèn)題、造價(jià)最低、利潤(rùn)最大等
冪函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)細(xì)胞分裂、生物繁殖等
三角函數(shù)測(cè)量、交流量、力學(xué)問(wèn)題等
3.4加強(qiáng)數(shù)學(xué)運(yùn)算能力。
數(shù)學(xué)應(yīng)用題一般運(yùn)算量較大、較復(fù)雜,且有近似計(jì)算。有的盡管思路正確、建模合理,但計(jì)算能力欠缺,就會(huì)前功盡棄。所以加強(qiáng)數(shù)學(xué)運(yùn)算推理能力是使數(shù)學(xué)建模正確求解的關(guān)鍵所在,忽視運(yùn)算能力,特別是計(jì)算能力的培養(yǎng),只重視推理過(guò)程,不重視計(jì)算過(guò)程的做法是不可取的。
利用數(shù)學(xué)建模解數(shù)學(xué)應(yīng)用題對(duì)于多角度、多層次、多側(cè)面思考問(wèn)題,培養(yǎng)學(xué)生發(fā)散思維能力是很有益的,是提高學(xué)生素質(zhì),進(jìn)行素質(zhì)教育的一條有效途徑。同時(shí)數(shù)學(xué)建模的`應(yīng)用也是科學(xué)實(shí)踐,有利于實(shí)踐能力的培養(yǎng),是實(shí)施素質(zhì)教育所必須的,需要引起教育工作者的足夠重視。
數(shù)學(xué)建模論文篇十一
:隨著經(jīng)濟(jì)的快速發(fā)展,我國(guó)的科學(xué)技術(shù)也得到了長(zhǎng)足的進(jìn)步,在計(jì)算機(jī)應(yīng)用方面,從對(duì)計(jì)算機(jī)技術(shù)尚存新鮮感到運(yùn)用成熟,可以說(shuō)有了質(zhì)的飛躍。在日常生活以及技術(shù)操作當(dāng)中,計(jì)算機(jī)已經(jīng)融入其中,廣泛地應(yīng)用于各行各業(yè),筆者以數(shù)學(xué)建模為例,分析了數(shù)學(xué)建模與計(jì)算機(jī)應(yīng)用之間的關(guān)系,與此同時(shí),也探尋了計(jì)算機(jī)應(yīng)用技術(shù)在數(shù)學(xué)建模的輔助之下發(fā)揮的作用,并對(duì)數(shù)學(xué)建模進(jìn)行概念定義,使得讀者能夠?qū)?shù)學(xué)建模的意義有著更深層次的了解,希望能夠起到促進(jìn)二者之間的良性發(fā)展。
數(shù)學(xué)建模;計(jì)算機(jī)技術(shù);計(jì)算機(jī)應(yīng)用
隨著經(jīng)濟(jì)的快速發(fā)展,我國(guó)的科學(xué)技術(shù)也有了長(zhǎng)足的進(jìn)步,而與之密不可分的數(shù)學(xué)學(xué)科也有著不可小覷的進(jìn)步,與此同時(shí),數(shù)學(xué)學(xué)科的延伸領(lǐng)域從物理等逐漸擴(kuò)展到環(huán)境、人口、社會(huì)、經(jīng)濟(jì)范圍,使得其作用力逐漸增強(qiáng)。不僅如此,數(shù)學(xué)學(xué)科由原本的研究事物的性質(zhì)分析逐漸轉(zhuǎn)變到研究定量性質(zhì)范圍,促進(jìn)了多方面多層次的發(fā)展,由此可見(jiàn),數(shù)學(xué)學(xué)科的重要性質(zhì)。在日常生活中,運(yùn)用數(shù)學(xué)學(xué)科去解決實(shí)際問(wèn)題時(shí),首要完成的就是從復(fù)雜的事物中找到普遍的規(guī)律現(xiàn)象存在,并用最為清晰的數(shù)字、符號(hào)、公式等將潛在的信息表達(dá)出來(lái),再運(yùn)用計(jì)算機(jī)技術(shù)加以呈現(xiàn),形成人們所要完成的結(jié)果。筆者以數(shù)學(xué)建模為例,分析了數(shù)學(xué)建模與計(jì)算機(jī)應(yīng)用之間的關(guān)系,與此同時(shí),也探尋了計(jì)算機(jī)應(yīng)用技術(shù)在數(shù)學(xué)建模的輔助之下發(fā)揮的作用,并對(duì)數(shù)學(xué)建模進(jìn)行概念定義,使得讀者能夠?qū)?shù)學(xué)建模的意義有著更深層次的了解,希望能夠起到促進(jìn)二者之間的良性發(fā)展。
從宏觀角度上來(lái)講,數(shù)學(xué)建模是更側(cè)重于實(shí)際研究方面,并不僅僅是通過(guò)數(shù)字演示來(lái)完成事物的一般發(fā)展規(guī)律,與一般的理論研究截然不同。其研究范圍之廣,能夠深入到各個(gè)領(lǐng)域當(dāng)中,從任何一個(gè)相關(guān)領(lǐng)域中都能夠找到數(shù)學(xué)學(xué)科的發(fā)展軌跡,從中不難看出數(shù)學(xué)學(xué)科的實(shí)際意義與鮮明特點(diǎn)。數(shù)學(xué)為一門(mén)注重實(shí)際問(wèn)題研究的學(xué)科,這一性質(zhì)方向決定了其研究的層次,其研究范圍大到漫無(wú)邊際的宇宙,小到對(duì)于個(gè)體微生物或者單細(xì)胞物體,綜合性之強(qiáng)形成了研究范圍廣的特點(diǎn)。多個(gè)學(xué)科之間互相影響,從中找到互相之間存在的相互聯(lián)系,其中有許多不能夠被忽視的數(shù)學(xué)元素,且這些元素都是至關(guān)重要的,所以這個(gè)計(jì)算過(guò)程十分復(fù)雜,計(jì)算量與數(shù)據(jù)驗(yàn)算過(guò)程也十分耗費(fèi)時(shí)間,因此需要充足的存儲(chǔ)空間支持這一過(guò)程的運(yùn)行。在數(shù)學(xué)建模的過(guò)程當(dāng)中,所涉獵的數(shù)學(xué)算法并不是很簡(jiǎn)單,而建立的模型也遵循個(gè)人習(xí)慣,因此建成的模型也不是一成不變的,但是都能夠得出相同的答案。正因如此,在數(shù)學(xué)建模的過(guò)程當(dāng)中,就需要使用各種輔助工具來(lái)完成這一過(guò)程。由于計(jì)算機(jī)軟件具有的高速運(yùn)轉(zhuǎn)空間,使得計(jì)算機(jī)技術(shù)應(yīng)用于數(shù)學(xué)學(xué)科的建模過(guò)程當(dāng)中,與數(shù)學(xué)建模過(guò)程密不可分息息相關(guān)。由此可見(jiàn),計(jì)算機(jī)技術(shù)的應(yīng)用水平對(duì)于數(shù)學(xué)學(xué)科的重要作用。
2。1計(jì)算機(jī)的獨(dú)特性與數(shù)學(xué)建模的實(shí)際性特點(diǎn)計(jì)算機(jī)的獨(dú)特性與數(shù)學(xué)建模的實(shí)際性特點(diǎn),使得二者之間有著密不可分的聯(lián)系,正是因?yàn)檫@種聯(lián)系使得雙方都能夠有長(zhǎng)足的發(fā)展,在技術(shù)上是起著互相促進(jìn)的作用。計(jì)算機(jī)的廣泛應(yīng)用為數(shù)學(xué)建模提供了較為便利的服務(wù),在使用過(guò)程當(dāng)中,數(shù)學(xué)建模也能夠起到完成對(duì)計(jì)算機(jī)技術(shù)的促進(jìn),能夠在這一過(guò)程中形成更為便捷高速的使用方法與途徑,使得計(jì)算機(jī)技術(shù)應(yīng)用更為靈活,也可以說(shuō)數(shù)學(xué)建模為計(jì)算機(jī)技術(shù)的實(shí)際應(yīng)用提供了更為廣闊的應(yīng)用空間,從中不難發(fā)現(xiàn),數(shù)學(xué)建模對(duì)于計(jì)算機(jī)應(yīng)用技術(shù)的支持性。計(jì)算機(jī)應(yīng)用技術(shù)需要合成的是多方面的技術(shù)支持,而數(shù)學(xué)建模則是需要首要完成的,二者之間是相互影響共同促進(jìn)的作用。
2。2計(jì)算機(jī)為數(shù)學(xué)建模提供了重要的技術(shù)支持?jǐn)?shù)學(xué)建模對(duì)于計(jì)算機(jī)應(yīng)用技術(shù)的重要的指導(dǎo)意義與作用。第一點(diǎn),計(jì)算機(jī)在其技術(shù)的支持之下,有著大量的存儲(chǔ)空間能夠完成存儲(chǔ)資料的這一過(guò)程,許多重要資料在計(jì)算機(jī)技術(shù)的保護(hù)之下,存儲(chǔ)時(shí)間較為長(zhǎng)久,且保護(hù)力度較大,不容易被破壞及減少了不必要的人力以及物力;第二點(diǎn),計(jì)算機(jī)是多媒體的一個(gè)分支,運(yùn)用其成熟的互聯(lián)網(wǎng)思維技術(shù),能夠完成數(shù)學(xué)建模從平面到空間的轉(zhuǎn)化,能夠提供更為成熟的模擬環(huán)境,從而提高實(shí)踐的效率。由于數(shù)學(xué)建模過(guò)程的復(fù)雜化及對(duì)于實(shí)際問(wèn)題的研究方向的特質(zhì),使得對(duì)于各項(xiàng)技術(shù)的要求就很高,所以,需要涉及的操作與數(shù)據(jù)量非常大,過(guò)程也十分復(fù)雜,常見(jiàn)的過(guò)程有三維打印、三維激光掃描等。這些都是需要計(jì)算機(jī)技術(shù)的支持才能夠完成的,所以對(duì)于計(jì)算機(jī)技術(shù)的要求非常高,與此同時(shí),計(jì)算機(jī)應(yīng)用技術(shù)為數(shù)學(xué)建模提供了更為便捷、快速的解決方案與途徑。
2。3數(shù)學(xué)建模為計(jì)算機(jī)的發(fā)展提供了基石計(jì)算機(jī)的產(chǎn)生起源于數(shù)學(xué)建模的過(guò)程,在二十世紀(jì)八十年代,由于導(dǎo)彈在飛行時(shí)的運(yùn)行軌跡的計(jì)算量過(guò)大,人工無(wú)法滿足這一高速率的運(yùn)算條件,基于這一背景條件,產(chǎn)生了計(jì)算機(jī),計(jì)算機(jī)應(yīng)用技術(shù)由此拉開(kāi)了序幕。數(shù)學(xué)建模的過(guò)程是需要計(jì)算機(jī)來(lái)完成的,在全部的過(guò)程當(dāng)中,計(jì)算機(jī)參與計(jì)算的比重很大,從某種意義程度上來(lái)講,計(jì)算機(jī)技術(shù)對(duì)于數(shù)學(xué)建模的發(fā)展是起著推動(dòng)性的作用的,二者之間是有著聯(lián)系的。
數(shù)學(xué)建模論文篇十二
大學(xué)數(shù)學(xué)具有高度抽象性和概括性等特點(diǎn),知識(shí)本身難度大再加上學(xué)時(shí)少、內(nèi)容多等教學(xué)現(xiàn)狀常常造成學(xué)生的學(xué)習(xí)積極性不高、知識(shí)掌握不夠透徹、遇到實(shí)際問(wèn)題時(shí)束手無(wú)策,而數(shù)學(xué)建模思想能激發(fā)學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)的意識(shí),提高其解決實(shí)際問(wèn)題的能力。數(shù)學(xué)建模活動(dòng)為學(xué)生構(gòu)建了一個(gè)由數(shù)學(xué)知識(shí)通向?qū)嶋H問(wèn)題的橋梁,是學(xué)生的數(shù)學(xué)知識(shí)和應(yīng)用能力共同提高的最佳結(jié)合方式。因此在大學(xué)數(shù)學(xué)教育中應(yīng)加強(qiáng)數(shù)學(xué)建模教育和活動(dòng),讓學(xué)生積極主動(dòng)學(xué)習(xí)建模思想,認(rèn)真體驗(yàn)和感知建模過(guò)程,以此啟迪創(chuàng)新意識(shí)和創(chuàng)新思維,提高其素質(zhì)和創(chuàng)新能力,實(shí)現(xiàn)向素質(zhì)教育的轉(zhuǎn)化和深入。
一、數(shù)學(xué)建模的含義及特點(diǎn)
數(shù)學(xué)建模即抓住問(wèn)題的本質(zhì),抽取影響研究對(duì)象的主因素,將其轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,利用數(shù)學(xué)思維、數(shù)學(xué)邏輯進(jìn)行分析,借助于數(shù)學(xué)方法及相關(guān)工具進(jìn)行計(jì)算,最后將所得的答案回歸實(shí)際問(wèn)題,即模型的檢驗(yàn),這就是數(shù)學(xué)建模的全過(guò)程。一般來(lái)說(shuō)",數(shù)學(xué)建模"包含五個(gè)階段。
1.準(zhǔn)備階段
主要分析問(wèn)題背景,已知條件,建模目的等問(wèn)題。
2.假設(shè)階段
做出科學(xué)合理的假設(shè),既能簡(jiǎn)化問(wèn)題,又能抓住問(wèn)題的本質(zhì)。
3.建立階段
從眾多影響研究對(duì)象的因素中適當(dāng)?shù)厝∩?,抽取主因素予以考慮,建立能刻畫(huà)實(shí)際問(wèn)題本質(zhì)的數(shù)學(xué)模型。
4.求解階段
對(duì)已建立的數(shù)學(xué)模型,運(yùn)用數(shù)學(xué)方法、數(shù)學(xué)軟件及相關(guān)的工具進(jìn)行求解。
5.驗(yàn)證階段
用實(shí)際數(shù)據(jù)檢驗(yàn)?zāi)P?,如果偏差較大,就要分析假設(shè)中某些因素的合理性,修改模型,直至吻合或接近現(xiàn)實(shí)。如果建立的模型經(jīng)得起實(shí)踐的檢驗(yàn),那么此模型就是符合實(shí)際規(guī)律的,能解決實(shí)際問(wèn)題或有效預(yù)測(cè)未來(lái)的,這樣的建模就是成功的,得到的模型必被推廣應(yīng)用。
二、加強(qiáng)數(shù)學(xué)建模教育的作用和意義
(一)加強(qiáng)數(shù)學(xué)建模教育有助于激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,提高數(shù)學(xué)修養(yǎng)和素質(zhì)
數(shù)學(xué)建模教育強(qiáng)調(diào)如何把實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,進(jìn)而利用數(shù)學(xué)及其有關(guān)的工具解決這些問(wèn)題,因此在大學(xué)數(shù)學(xué)的教學(xué)活動(dòng)中融入數(shù)學(xué)建模思想,鼓勵(lì)學(xué)生參與數(shù)學(xué)建模實(shí)踐活動(dòng),不但可以使學(xué)生學(xué)以致用,做到理論聯(lián)系實(shí)際,而且還會(huì)使他們感受到數(shù)學(xué)的生機(jī)與活力,激發(fā)求知的興趣和探索的欲望,變被動(dòng)學(xué)習(xí)為主動(dòng)參與其效率就會(huì)大為改善。數(shù)學(xué)修養(yǎng)和素質(zhì)自然而然得以培養(yǎng)并提高。
(二)加強(qiáng)數(shù)學(xué)建模教育有助于提高學(xué)生的分析解決問(wèn)題能力、綜合應(yīng)用能力
數(shù)學(xué)建模問(wèn)題來(lái)源于社會(huì)生活的眾多領(lǐng)域,在建模過(guò)程中,學(xué)生首先需要閱讀相關(guān)的文獻(xiàn)資料,然后應(yīng)用數(shù)學(xué)思維、數(shù)學(xué)邏輯及相關(guān)知識(shí)對(duì)實(shí)際問(wèn)題進(jìn)行深入剖析研究并經(jīng)過(guò)一系列復(fù)雜計(jì)算,得出反映實(shí)際問(wèn)題的最佳數(shù)學(xué)模型及模型最優(yōu)解。因此通過(guò)數(shù)學(xué)建?;顒?dòng)學(xué)生的視野將會(huì)得以拓寬,應(yīng)用意識(shí)、解決復(fù)雜問(wèn)題的能力也會(huì)得到增強(qiáng)和提高。
(三)加強(qiáng)數(shù)學(xué)建模教育有助于培養(yǎng)學(xué)生的創(chuàng)造性思維和創(chuàng)新能力
所謂創(chuàng)造力是指"對(duì)已積累的知識(shí)和經(jīng)驗(yàn)進(jìn)行科學(xué)地加工和創(chuàng)造,產(chǎn)生新概念、新知識(shí)、新思想的能力,大體上由感知力、記憶力、思考力、想象力四種能力所構(gòu)成".現(xiàn)今教育界認(rèn)為,創(chuàng)造力的培養(yǎng)是人才培養(yǎng)的關(guān)鍵,數(shù)學(xué)建?;顒?dòng)的各個(gè)環(huán)節(jié)無(wú)不充滿了創(chuàng)造性思維的挑戰(zhàn)。
很多不同的實(shí)際問(wèn)題,其數(shù)學(xué)模型可以是相同或相似的,這就要求學(xué)生在建模時(shí)觸類(lèi)旁通,挖掘不同事物間的本質(zhì),尋找其內(nèi)在聯(lián)系。而對(duì)一個(gè)具體的建模問(wèn)題,能否把握其本質(zhì)轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,是完成建模過(guò)程的關(guān)鍵所在。同時(shí)建模題材有較大的靈活性,沒(méi)有統(tǒng)一的標(biāo)準(zhǔn)答案,因此數(shù)學(xué)建模過(guò)程是培養(yǎng)學(xué)生創(chuàng)造性思維,提高創(chuàng)新能力的過(guò)程.
(四)加強(qiáng)數(shù)學(xué)建模教育有助于提高學(xué)生科技論文的撰寫(xiě)能力
數(shù)學(xué)建模的結(jié)果是以論文形式呈現(xiàn)的,如何將建模思想、建立的`模型、最優(yōu)解及其關(guān)鍵環(huán)節(jié)的處理在論文中清晰地表述出來(lái),對(duì)本科生來(lái)說(shuō)是一個(gè)挑戰(zhàn)。經(jīng)歷數(shù)學(xué)建模全過(guò)程的磨練,特別是數(shù)模論文的撰寫(xiě),學(xué)生的文字語(yǔ)言、數(shù)學(xué)表述能力及論文的撰寫(xiě)能力無(wú)疑會(huì)得到前所未有的提高。
(五)加強(qiáng)數(shù)學(xué)建模教育有助于增強(qiáng)學(xué)生的團(tuán)結(jié)合作精神并提高協(xié)調(diào)組織能力建模問(wèn)題通常較復(fù)雜,涉及的知識(shí)面也很廣,因此數(shù)學(xué)建模實(shí)踐活動(dòng)一般效仿正規(guī)競(jìng)賽的規(guī)則,三人為一隊(duì)在三天內(nèi)以論文形式完成建模題目。要較好地完成任務(wù),離不開(kāi)良好的組織與管理、分工與協(xié)作.
三、開(kāi)展數(shù)學(xué)建模教育及活動(dòng)的具體途徑和有效方法
(一)開(kāi)展數(shù)學(xué)建模課堂教學(xué)
即在課堂教學(xué)中,教師以具體的案例作為主要的教學(xué)內(nèi)容,通過(guò)具體問(wèn)題的建模,介紹建模的過(guò)程和思想方法及建模中要注意的問(wèn)題。案例教學(xué)法的關(guān)鍵在于把握兩個(gè)重要環(huán)節(jié):
案例的選取和課堂教學(xué)的組織。
教學(xué)案例一定要精心選取,才能達(dá)到預(yù)期的教學(xué)效果。其選取一般要遵循以下幾點(diǎn)。
1.代表性:案例的選取要具有科學(xué)性,能拓寬學(xué)生的知識(shí)面,突出數(shù)學(xué)建?;顒?dòng)重在培養(yǎng)興趣提高能力等特點(diǎn)。
2.原始性:來(lái)自媒體的信息,企事業(yè)單位的報(bào)告,現(xiàn)實(shí)生活和各學(xué)科中的問(wèn)題等等,都是數(shù)學(xué)建模問(wèn)題原始資料的重要來(lái)源。
3.創(chuàng)新性:案例應(yīng)注意選取在建模的某些環(huán)節(jié)上具有挑戰(zhàn)性,能激發(fā)學(xué)生的創(chuàng)造性思維,培養(yǎng)學(xué)生的創(chuàng)新精神和提高創(chuàng)造能力。
案例教學(xué)的課堂組織,一部分是教師講授,從實(shí)際問(wèn)題出發(fā),講清問(wèn)題的背景、建模的要求和已掌握的信息,介紹如何通過(guò)合理的假設(shè)和簡(jiǎn)化建立優(yōu)化的數(shù)學(xué)模型。還要強(qiáng)調(diào)如何用求解結(jié)果去解釋實(shí)際現(xiàn)象即檢驗(yàn)?zāi)P汀A硪徊糠质钦n堂討論,讓學(xué)生自由發(fā)言各抒己見(jiàn)并提出新的模型,簡(jiǎn)介關(guān)鍵環(huán)節(jié)的處理。最后教師做出點(diǎn)評(píng),提供一些改進(jìn)的方向,讓學(xué)生自己課外獨(dú)立探索和鉆研,這樣既突出了教學(xué)重點(diǎn),又給學(xué)生留下了進(jìn)一步思考的空間,既避免了教師的"滿堂灌",也活躍了課堂氣氛,提高了學(xué)生的課堂學(xué)習(xí)興趣和積極性,使傳授知識(shí)變?yōu)閷W(xué)習(xí)知識(shí)、應(yīng)用知識(shí),真正地達(dá)到提高素質(zhì)和培養(yǎng)能力的教學(xué)目的.
(二)開(kāi)展數(shù)模競(jìng)賽的專(zhuān)題培訓(xùn)指導(dǎo)工作
建立數(shù)學(xué)建模競(jìng)賽指導(dǎo)團(tuán)隊(duì),分專(zhuān)題實(shí)行教師負(fù)責(zé)制。每位教師根據(jù)自己的專(zhuān)長(zhǎng),負(fù)責(zé)講授某一方面的數(shù)學(xué)建模知識(shí)與技巧,并選取相應(yīng)地建模案例進(jìn)行剖析。如離散模型、連續(xù)模型、優(yōu)化模型、微分方程模型、概率模型、統(tǒng)計(jì)回歸模型及數(shù)學(xué)軟件的使用等。學(xué)生根據(jù)自己的薄弱點(diǎn),選擇適合的專(zhuān)題培訓(xùn)班進(jìn)行學(xué)習(xí),以彌補(bǔ)自己的不足。這種針對(duì)性的數(shù)模教學(xué),會(huì)極大地提高教學(xué)效率。
(三)建立數(shù)學(xué)建模網(wǎng)絡(luò)課程
以現(xiàn)代網(wǎng)絡(luò)技術(shù)為依托,建立數(shù)學(xué)建模課程網(wǎng)站,內(nèi)容包括:課程介紹,課程大綱,教師教案,電子課件,教學(xué)實(shí)驗(yàn),教學(xué)錄像,網(wǎng)上答疑等;還可以增加一些有關(guān)欄目,如歷年國(guó)內(nèi)外數(shù)模競(jìng)賽介紹,校內(nèi)競(jìng)賽,專(zhuān)家點(diǎn)評(píng),獲獎(jiǎng)心得交流;同時(shí)提供數(shù)模學(xué)習(xí)資源下載如講義,背景材料,歷年國(guó)內(nèi)外競(jìng)賽題,優(yōu)秀論文等。以此為學(xué)生提供良好的自主學(xué)習(xí)網(wǎng)絡(luò)平臺(tái),實(shí)現(xiàn)課堂教學(xué)與網(wǎng)絡(luò)教學(xué)的有機(jī)結(jié)合,達(dá)到有效地提高學(xué)生數(shù)學(xué)建模綜合應(yīng)用能力的目的。
(四)開(kāi)展校內(nèi)數(shù)學(xué)建模競(jìng)賽活動(dòng)
完全模擬全國(guó)大學(xué)生數(shù)模競(jìng)賽的形式規(guī)則:定時(shí)公布賽題,三人一組,只能隊(duì)內(nèi)討論,按時(shí)提交論文,之后指導(dǎo)教師、參賽同學(xué)集中討論,進(jìn)一步完善。筆者負(fù)責(zé)數(shù)學(xué)建模競(jìng)賽培訓(xùn)近20年,多年的實(shí)踐證明,每進(jìn)行一次這樣的訓(xùn)練,學(xué)生在建模思路、建模水平、使用軟件能力、論文書(shū)寫(xiě)方面就有大幅提高。多次訓(xùn)練之后,學(xué)生的建模水平更是突飛猛進(jìn),效果甚佳。
如20xx年我指導(dǎo)的隊(duì)榮獲全國(guó)高教社杯大學(xué)生數(shù)學(xué)建模競(jìng)賽的最高獎(jiǎng)---高教社杯獎(jiǎng),這是此賽設(shè)置的唯一一個(gè)名額,也是當(dāng)年從全國(guó)(包括香港)院校的約1萬(wàn)多個(gè)本科參賽隊(duì)中脫穎而出的。又如20xx年我校57隊(duì)參加全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽,43隊(duì)獲獎(jiǎng),獲獎(jiǎng)比例達(dá)75%,創(chuàng)歷年之最。
(五)鼓勵(lì)學(xué)生積極參加全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽、國(guó)際數(shù)學(xué)建模競(jìng)賽
全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽創(chuàng)辦于1992年,每年一屆,目前已成為全國(guó)高校規(guī)模最大的基礎(chǔ)性學(xué)科競(jìng)賽,國(guó)際大學(xué)生數(shù)學(xué)建模競(jìng)賽是世界上影響范圍最大的高水平大學(xué)生學(xué)術(shù)賽事。參加數(shù)學(xué)建模大賽可以激勵(lì)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,提高運(yùn)用數(shù)學(xué)及相關(guān)工具分析問(wèn)題解決問(wèn)題的綜合能力,開(kāi)拓知識(shí)面,培養(yǎng)創(chuàng)造精神及合作意識(shí)。
四、結(jié)束語(yǔ)
數(shù)學(xué)建模本身是一個(gè)創(chuàng)造性的思維過(guò)程,它是對(duì)數(shù)學(xué)知識(shí)的綜合應(yīng)用,具有較強(qiáng)的創(chuàng)新性,而高校數(shù)學(xué)教學(xué)改革的目的之一是要著力培養(yǎng)學(xué)生的創(chuàng)造性思維,提高學(xué)生的創(chuàng)新能力。因此應(yīng)將數(shù)學(xué)建模思想融入教學(xué)活動(dòng)中,通過(guò)不斷的數(shù)學(xué)建模教育和實(shí)踐培養(yǎng)學(xué)生的創(chuàng)新能力和應(yīng)用能力從而提高學(xué)生的基本素質(zhì)以適應(yīng)社會(huì)發(fā)展的要求。
數(shù)學(xué)建模論文篇十三
1、從應(yīng)用數(shù)學(xué)出發(fā)數(shù)學(xué)建模主要是通過(guò)運(yùn)用數(shù)學(xué)知識(shí)解決生活中遇到實(shí)際問(wèn)題的全過(guò)程。要讓數(shù)學(xué)建模思想與大學(xué)數(shù)學(xué)教學(xué)課程進(jìn)行有效的融合,最佳切入點(diǎn)就是課堂上把用數(shù)學(xué)解決生活中的實(shí)際問(wèn)題與教學(xué)內(nèi)容相融合,以應(yīng)用數(shù)學(xué)為導(dǎo)向,訓(xùn)練學(xué)生綜合運(yùn)用數(shù)學(xué)知識(shí)去刻畫(huà)實(shí)際問(wèn)題、提煉數(shù)學(xué)模型、處理實(shí)際數(shù)據(jù)、分析解決實(shí)際問(wèn)題的能力,培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)原理解決生活問(wèn)題的興趣和愛(ài)好。授課過(guò)程中,要改變以往單純地進(jìn)行課堂灌輸?shù)男袨?,多引入?yīng)用數(shù)學(xué)的內(nèi)容,通過(guò)師生互動(dòng)、課堂討論、小課題研究實(shí)踐等多種形式靈活多樣的教學(xué)方法,培養(yǎng)引導(dǎo)學(xué)生樹(shù)立應(yīng)用數(shù)學(xué)建模解決實(shí)際問(wèn)題的思想。
2、從數(shù)學(xué)實(shí)驗(yàn)做起要加強(qiáng)獨(dú)立學(xué)院學(xué)生進(jìn)行數(shù)學(xué)實(shí)驗(yàn)的行為,筆者認(rèn)為數(shù)學(xué)建模與數(shù)學(xué)實(shí)驗(yàn)有著密切的聯(lián)系,兩者都是從解決實(shí)際問(wèn)題出發(fā),當(dāng)前的大學(xué)生數(shù)學(xué)實(shí)驗(yàn)基本上是應(yīng)用數(shù)學(xué)軟件、數(shù)值計(jì)算、建立模型、過(guò)程演算和圖形顯示等一系列過(guò)程,因此進(jìn)行數(shù)學(xué)實(shí)驗(yàn)的全過(guò)程就是數(shù)學(xué)建模思想的啟發(fā)過(guò)程。但是我國(guó)的教育資源和教學(xué)方針限制了獨(dú)立學(xué)院學(xué)生的學(xué)習(xí)環(huán)境和學(xué)習(xí)資源,能夠進(jìn)行數(shù)學(xué)實(shí)驗(yàn)的條件還是有限的。即使個(gè)別有實(shí)驗(yàn)?zāi)芰Φ膶W(xué)校,也未能進(jìn)行充分利用,數(shù)學(xué)實(shí)驗(yàn)課的內(nèi)容隨意性較大,有些院校將其降格為軟件學(xué)習(xí)課程或初級(jí)算法課。根據(jù)調(diào)研,目前大部分獨(dú)立學(xué)院未開(kāi)設(shè)此類(lèi)課程,這是數(shù)學(xué)建模思想與大學(xué)數(shù)學(xué)教學(xué)課程融合的一大損失,不利于學(xué)生創(chuàng)新思維能力的提高。各校應(yīng)當(dāng)積極創(chuàng)造條件,把數(shù)學(xué)實(shí)驗(yàn)課設(shè)為大學(xué)數(shù)學(xué)的必修課,爭(zhēng)取設(shè)立數(shù)學(xué)建模選修課,并積極探索、逐步實(shí)現(xiàn)把數(shù)學(xué)建模的思想和方法融入大學(xué)數(shù)學(xué)的主干課程。
3、從計(jì)算機(jī)應(yīng)用切入數(shù)學(xué)是為理、工、經(jīng)、管、農(nóng)、醫(yī)、文等眾多學(xué)科服務(wù)的基礎(chǔ)工具,它在不同的領(lǐng)域因?yàn)閼?yīng)用程度不同而導(dǎo)致被重視的程度不同。但在當(dāng)今的信息化時(shí)代,計(jì)算機(jī)的廣泛應(yīng)用和計(jì)算技術(shù)的飛速發(fā)展,使科學(xué)計(jì)算和數(shù)值模擬已成為絕大多數(shù)學(xué)科的必要工具和常用手段。數(shù)學(xué)在不同學(xué)科領(lǐng)域有了共同的主題,即應(yīng)用數(shù)學(xué)建模,通過(guò)計(jì)算機(jī)對(duì)各自領(lǐng)域的科學(xué)研究、生活問(wèn)題等進(jìn)行模擬分析,這成為數(shù)學(xué)建模思想在跨學(xué)科領(lǐng)域交流和傳播的一個(gè)重要途徑。每個(gè)領(lǐng)域的教學(xué)可以計(jì)算機(jī)應(yīng)用為切入點(diǎn),讓數(shù)學(xué)建模思想與數(shù)學(xué)授課無(wú)縫結(jié)合,在提高學(xué)生掌握知識(shí)能力、挖掘培養(yǎng)創(chuàng)新思維的同時(shí),增加了大學(xué)數(shù)學(xué)課程內(nèi)容的豐富性、實(shí)用性,促進(jìn)教學(xué)手段變革和創(chuàng)新。因此,大學(xué)應(yīng)以適應(yīng)現(xiàn)代信息技術(shù)發(fā)展的形勢(shì)和學(xué)生將來(lái)的需求為契機(jī),加快改進(jìn)大學(xué)數(shù)學(xué)課程教學(xué)方式,把數(shù)學(xué)建模的思想和方法以及現(xiàn)代計(jì)算技術(shù)和計(jì)算工具盡快融入大學(xué)數(shù)學(xué)的主干課程當(dāng)中。
大學(xué)數(shù)學(xué)課程是大學(xué)工科各專(zhuān)業(yè)培養(yǎng)計(jì)劃中重要的公共基礎(chǔ)理論課,其目的在于培養(yǎng)工程技術(shù)人才所必備的數(shù)學(xué)素質(zhì),為培養(yǎng)我國(guó)現(xiàn)代化建設(shè)需要的高素質(zhì)人才服務(wù)。數(shù)學(xué)建模課程的必修化,要從能夠擴(kuò)充學(xué)生的知識(shí)結(jié)構(gòu),培養(yǎng)學(xué)生的創(chuàng)造性思維能力、抽象概括能力、邏輯推理能力、自學(xué)能力、分析問(wèn)題和解決問(wèn)題能力的角度出發(fā),建立適合獨(dú)立學(xué)院學(xué)生的數(shù)學(xué)建模教學(xué)內(nèi)容。日前獨(dú)立學(xué)院開(kāi)展數(shù)學(xué)建?;顒?dòng)涉及內(nèi)容較淺,缺少相應(yīng)的數(shù)學(xué)建模和數(shù)學(xué)實(shí)驗(yàn)方而的教材。筆者近幾年通過(guò)承擔(dān)此類(lèi)課題的研究,認(rèn)為應(yīng)該加強(qiáng)以下內(nèi)容的建設(shè):
。2、開(kāi)設(shè)選修課拓展知識(shí)領(lǐng)域,讓學(xué)生可以通過(guò)選修數(shù)學(xué)建模、運(yùn)籌學(xué)、開(kāi)設(shè)數(shù)學(xué)實(shí)驗(yàn)(介紹matlab、maple等計(jì)算軟件課程),增加建立和解答數(shù)學(xué)模型的方法和技巧。比如以前用的“文曲星”電子詞典里的貸款計(jì)算,就是一個(gè)典型的運(yùn)用數(shù)學(xué)模型方便百姓自己計(jì)算的應(yīng)用。這個(gè)模型單靠數(shù)學(xué)和經(jīng)濟(jì)學(xué)單方面的知識(shí)是不夠的,必須把數(shù)學(xué)與經(jīng)濟(jì)學(xué)聯(lián)系在一起,才能有效解決生活中的問(wèn)題。
3、積極組織學(xué)生開(kāi)展或是參加數(shù)學(xué)建模大賽比賽是各個(gè)選手充分發(fā)揮水平、展示自己智慧的途徑,也是數(shù)學(xué)建模思想傳播的最好手段。比賽可以讓各個(gè)選手發(fā)現(xiàn)自己的不足,尋找自身數(shù)學(xué)建模出發(fā)點(diǎn)的缺陷,通過(guò)交流,還可以拓展學(xué)生思維。因此,有必要積極組織學(xué)生參入初等數(shù)學(xué)知識(shí)可以解決的數(shù)學(xué)模型、線性規(guī)劃模型、指派問(wèn)題模型、存儲(chǔ)問(wèn)題模型、圖論應(yīng)用題等方面的模擬競(jìng)賽,通過(guò)參賽積累大量數(shù)學(xué)建模知識(shí),促進(jìn)數(shù)學(xué)建模在教學(xué)中扮演更重要的`角色。教師應(yīng)該對(duì)歷年的全國(guó)大學(xué)生數(shù)學(xué)建模競(jìng)賽真題進(jìn)行認(rèn)真的解讀分析,通過(guò)對(duì)有意義的題目,如20xx年的《葡萄酒的評(píng)價(jià)》、《太陽(yáng)能小屋的設(shè)計(jì)》,20xx年的《交巡警服務(wù)平臺(tái)的設(shè)置與調(diào)度車(chē)燈線光源的計(jì)算》、20xx年的《眼科病床的合理安排》等,與生活相關(guān)的例子進(jìn)行講解分析,提高學(xué)生對(duì)數(shù)學(xué)建模的興趣和對(duì)模型應(yīng)用的直觀的認(rèn)識(shí),實(shí)現(xiàn)學(xué)校應(yīng)用型人才的培養(yǎng)。
4、加快教育方式的轉(zhuǎn)變高等教育設(shè)立數(shù)學(xué)這門(mén)學(xué)科就是為了應(yīng)用服務(wù),內(nèi)容應(yīng)重點(diǎn)放在基本概念、定理、公式等在生活中的應(yīng)用上。而傳統(tǒng)的高等數(shù)學(xué),除了推導(dǎo)就是證明,因此,要對(duì)傳統(tǒng)內(nèi)容進(jìn)行優(yōu)化組合,根據(jù)教學(xué)特點(diǎn)和學(xué)生情況推陳出新,要注重?cái)?shù)學(xué)思想的滲透和數(shù)學(xué)方法的介紹,對(duì)高等數(shù)學(xué)精髓的求導(dǎo)、微分方法、積分方法等的授課要重點(diǎn)放在解決實(shí)際生活的應(yīng)用上。要結(jié)合一些社會(huì)實(shí)踐問(wèn)題與函數(shù)建立的關(guān)系,分析確定變量、參數(shù),加強(qiáng)有關(guān)函數(shù)關(guān)系式建立的日常訓(xùn)練。培養(yǎng)學(xué)生對(duì)一些問(wèn)題的邏輯分析、抽象、簡(jiǎn)化并用數(shù)學(xué)語(yǔ)言表達(dá)的能力,逐步將學(xué)生帶入遇到問(wèn)題就能自然地去轉(zhuǎn)化成數(shù)學(xué)模型進(jìn)行處理的境界,并能將數(shù)學(xué)結(jié)論又能很好反向轉(zhuǎn)化成實(shí)際應(yīng)用。
21世紀(jì)我國(guó)進(jìn)入了大眾教育時(shí)期,高校招生人數(shù)劇增,學(xué)生水平差距較大,需要學(xué)校瞄準(zhǔn)正確的培養(yǎng)方向。通過(guò)對(duì)美國(guó)教學(xué)改革的研究,筆者認(rèn)為我國(guó)的數(shù)學(xué)建模思想與大學(xué)數(shù)學(xué)教學(xué)課程融合必須盡快在大學(xué)中廣泛推進(jìn),但要注意一些問(wèn)題:第一,數(shù)學(xué)教學(xué)改革一定要基于學(xué)生的現(xiàn)實(shí)水平,數(shù)學(xué)建模思想融入要與時(shí)俱進(jìn)。第二,教學(xué)目標(biāo)要正確定位,融合過(guò)程一定要與教學(xué)研究相結(jié)合,要在加強(qiáng)交流的基礎(chǔ)上不斷改進(jìn)。第三,大學(xué)生數(shù)學(xué)建模競(jìng)賽的舉辦和參入,要給予正確的理解和引導(dǎo),形成良性循環(huán)。要根據(jù)個(gè)人興趣愛(ài)好,注重個(gè)性,不應(yīng)面面強(qiáng)求。第四,傳統(tǒng)數(shù)學(xué)思想與現(xiàn)在數(shù)學(xué)建模思想必須互補(bǔ),必修與選修課程的作用與角色要分清。數(shù)學(xué)主干課程的教學(xué)水平是大學(xué)教學(xué)質(zhì)量的關(guān)鍵指標(biāo)之一,具備數(shù)學(xué)建模思想是理工類(lèi)大學(xué)生能否成為創(chuàng)新人才的重要條件之一。兩者的融合必將促進(jìn)我國(guó)教學(xué)水平和質(zhì)量的提高,為社會(huì)輸送更多的實(shí)用型、創(chuàng)新型人才。