精選數(shù)學(xué)建模論文(案例18篇)

2025/6/8 6:48:02

|

字號:

    總結(jié)是讓我們更清晰地認(rèn)識自己,更明確地制定目標(biāo)和計劃。在寫總結(jié)時,我們還可以借鑒他人的經(jīng)驗和觀點,豐富自己的思考和總結(jié)。在閱讀過程中遇到困難時,試試以下的閱讀技巧,或許會有幫助。
    數(shù)學(xué)建模論文篇一
    數(shù)學(xué)是在實際應(yīng)用的需求中產(chǎn)生的,要描述一個實際現(xiàn)象可以有很多種方式,為了實際問題描述的更具邏輯性、科學(xué)性、客觀性和可重復(fù)性,人們采用一種普遍認(rèn)為比較嚴(yán)格的語言來描述各種現(xiàn)象,這種語言就是數(shù)學(xué)。數(shù)學(xué)建模則是架于數(shù)學(xué)理論和實際問題之間的橋梁,數(shù)學(xué)模型是對于現(xiàn)實生活中的特定對象,根據(jù)其內(nèi)在的規(guī)律,做出一些必要的假設(shè),為了一個特定目的,運用數(shù)學(xué)工具,得到的一個數(shù)學(xué)結(jié)構(gòu),用來解釋現(xiàn)實現(xiàn)象,預(yù)測未來狀況。因此,數(shù)學(xué)建模就是用數(shù)學(xué)語言描述實際現(xiàn)象的過程。
    大部分的獨立院校的數(shù)學(xué)建模工作純在一定的問題,主要體現(xiàn)在以下幾個方面:(一)學(xué)生方面的問題。獨立院校的大部分學(xué)生的數(shù)學(xué)功底差,對數(shù)學(xué)的學(xué)習(xí)興趣不大,普遍認(rèn)為數(shù)學(xué)的學(xué)習(xí)對自身的專業(yè)的幫助不大。從而更不愿意接觸與數(shù)學(xué)有關(guān)的數(shù)學(xué)建模,對數(shù)學(xué)建模競賽的興趣不大。在獨立院校中,參加數(shù)學(xué)建模競賽的大都是低年級的學(xué)生,而這些學(xué)生的數(shù)學(xué)知識結(jié)構(gòu)還不完整,他們往往參加了一屆數(shù)學(xué)競賽并未獲得獎項后就不愿意再次參加。而高年級的同學(xué)忙于其他的就業(yè)、考研等壓力,無暇參加數(shù)學(xué)建模競賽的培訓(xùn)。(二)教資方面的問題。首先。傳統(tǒng)的教學(xué)是知識為中心、以教師的講解為中心。數(shù)學(xué)建模的教學(xué)要求教師以學(xué)生為中心,培養(yǎng)學(xué)生學(xué)會學(xué)習(xí)的能力,發(fā)展學(xué)生的創(chuàng)新能力和創(chuàng)造能力。獨立院校外聘的老師常常對獨立院校的學(xué)生不夠了解,這直接影響到教學(xué)成果。其次,數(shù)學(xué)建模涉及的知識面廣,不但包括數(shù)學(xué)的各個分支,還包含了其他背景的專業(yè)知識。獨立院校的教師一部分是才從大學(xué)畢業(yè)不久的研究生,他們對于數(shù)學(xué)建模教學(xué)和競賽的培訓(xùn)經(jīng)驗不足,科研能力不是很強,對數(shù)學(xué)的各個分支的把控能力不強,對其他專業(yè)的了解不夠全面。(三)教學(xué)實施方面的問題。大學(xué)生數(shù)學(xué)建模競賽的目的決不僅僅是獲獎,更重要的是通過參加大學(xué)生數(shù)學(xué)建模競賽活動,促進高校數(shù)學(xué)教學(xué)改革,起到培養(yǎng)全體學(xué)生能力、提高全體學(xué)生素質(zhì)的作用。獨立院校數(shù)學(xué)建模教學(xué)存在很多的問題。首先,大學(xué)數(shù)學(xué)建模教育在獨立院校中的普及性不夠。數(shù)學(xué)建模的宣傳力度不大,課程大多開在大一和大二的跨選課,這個時候?qū)W生的數(shù)學(xué)知識結(jié)構(gòu)還不完整。其次就是教材的選取,數(shù)學(xué)建模的相關(guān)教材大都是為了數(shù)學(xué)建模競賽而編寫的,對于獨立院校的學(xué)生來說,這些教材的難度系數(shù)大,涉及的知識面廣,遠(yuǎn)遠(yuǎn)超過了學(xué)生的接受能力。
    (一)讓學(xué)生了解數(shù)學(xué)建模,培養(yǎng)學(xué)習(xí)數(shù)學(xué)建模的興趣。數(shù)學(xué)建模課程的開設(shè)有利于培養(yǎng)學(xué)生運用數(shù)學(xué)具體解決實際問題的能力,讓學(xué)生發(fā)現(xiàn)學(xué)習(xí)數(shù)學(xué)的用處,改變學(xué)生學(xué)習(xí)數(shù)學(xué)的態(tài)度,提高學(xué)習(xí)數(shù)學(xué)的能力,認(rèn)識到數(shù)學(xué)的意義和價值。獨立院校學(xué)生的數(shù)學(xué)基礎(chǔ)雖然比較差,但是學(xué)生的動手能力強。學(xué)??梢栽诙嚅_展數(shù)學(xué)建模的講座和課程,讓學(xué)生了解數(shù)學(xué)建模。同時多向?qū)W生宣傳數(shù)學(xué)建模的成果。(二)在教學(xué)內(nèi)容中滲透數(shù)學(xué)建模思想和方法。1.在日常數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)建模的思想方法。傳統(tǒng)的數(shù)學(xué)教學(xué)重視的是知識的培養(yǎng)和傳輸,而忽視的是實際應(yīng)用能力。教師的教學(xué)目標(biāo)是使學(xué)生掌握數(shù)學(xué)理論知識。一般的教學(xué)方法是:教師引入相關(guān)的的基本概念,證明定理,推導(dǎo)公式,列舉例題,學(xué)生記住公式,套用公式,掌握解題方法與技巧。學(xué)生往往學(xué)習(xí)了不少的純粹的數(shù)學(xué)理論知識,卻不知道如何應(yīng)用到實際問題中。數(shù)學(xué)建模課程與傳統(tǒng)數(shù)學(xué)課程相比差別較大,學(xué)校開設(shè)的數(shù)學(xué)建??邕x課及數(shù)學(xué)建模培訓(xùn)班,對培養(yǎng)學(xué)生觀察能力、分析能力、想象力、邏輯能力、解決實際問題的能力起到了很好的作用。由于學(xué)校開設(shè)的數(shù)學(xué)建模課程大多是選修課程,課時較少,參選的學(xué)生也有限,數(shù)學(xué)建模的作用不能很好的向?qū)W生傳輸。高等數(shù)學(xué)中的很多內(nèi)容都與數(shù)學(xué)建模的思想有關(guān),因此,在大學(xué)數(shù)學(xué)課程的教學(xué)過程中,教師應(yīng)有意識地結(jié)合傳統(tǒng)的數(shù)學(xué)課程的特點,將數(shù)學(xué)建模的思想和內(nèi)容融入到數(shù)學(xué)課堂教學(xué)中。這樣既可以激發(fā)學(xué)生的學(xué)習(xí)興趣,又能很好的將突出數(shù)學(xué)建模的思想。2.數(shù)學(xué)建模與專業(yè)緊密聯(lián)系,發(fā)揮數(shù)學(xué)對專業(yè)知識的服務(wù)作用。數(shù)學(xué)建模與專業(yè)知識的結(jié)合,不僅可以讓學(xué)生認(rèn)識到數(shù)學(xué)的重要作用,在專業(yè)知識學(xué)習(xí)中的地位,還可以培養(yǎng)學(xué)習(xí)數(shù)學(xué)知識的興趣,增強數(shù)學(xué)學(xué)習(xí)的凝聚力,同時加深對專業(yè)知識的理解。通過專業(yè)知識作為背景,學(xué)生更愿意嘗試問題的研究。在學(xué)習(xí)中遇到的專業(yè)問題也可以嘗試用數(shù)學(xué)建模的思想進行解決。這有利于提高學(xué)生的綜合能力的培養(yǎng)。3.分層次進行數(shù)學(xué)建模教育。大體說來獨立院校的數(shù)學(xué)建模課程的開設(shè)應(yīng)該分成兩個階段:(1)第一階段:大學(xué)一年級,在這個階段,大部分學(xué)生對數(shù)學(xué)建模沒有了解,這時候適合開設(shè)一些數(shù)學(xué)建模的講座和活動,讓學(xué)生了解數(shù)學(xué)建模。同時,在日常的數(shù)學(xué)教學(xué)中選擇簡單的應(yīng)用問題和改變后的數(shù)學(xué)建模題目,結(jié)合自身的專業(yè)知識進行講解,讓學(xué)生了解數(shù)學(xué)建模的一般含義?;痉椒ê筒襟E,讓學(xué)生具備初步的建模能力。(2)中級層次:大學(xué)二、三年級。在這個階段,學(xué)生基本具備了完整的數(shù)學(xué)結(jié)構(gòu),具有了基本的建模能力。這個時候應(yīng)該開設(shè)數(shù)學(xué)建模專業(yè)課程,讓學(xué)生處理比較復(fù)雜的數(shù)學(xué)建模問題,讓學(xué)生自己去采集有用的信息,學(xué)會提出模型的假設(shè),對數(shù)據(jù)和信息需進行整理、分析和判斷,并模型進行分析和評價,最終完成科技論文。
    (一)提高數(shù)學(xué)教師自身水平。在數(shù)學(xué)建模教學(xué)過程中,教師扮演著重要的角色。教師水平的高低決定著數(shù)學(xué)建模教學(xué)能否達到預(yù)期的目的。數(shù)學(xué)建模的教學(xué),不僅要求教師具備較高的專業(yè)水平,還要求教師具備解決實際問題的能力和豐富的數(shù)學(xué)建模實踐經(jīng)驗。而獨立院校的教師部分教師是才畢業(yè)不久的研究生,缺乏實踐經(jīng)驗。這就對獨立院校的的數(shù)學(xué)建模教學(xué)工作產(chǎn)生了很大的障礙。為了提高教師的水平,可以多派青年教師進行專業(yè)培訓(xùn)學(xué)習(xí)和學(xué)術(shù)交流,參加各種學(xué)術(shù)會議、到名校去做訪問學(xué)者等等。同時可以多請著名的數(shù)學(xué)專家教授來到校園做建模學(xué)術(shù)報告,使師生拓寬視野,增長知識,了解建模的新趨勢、新動態(tài)。青年教師還需要依據(jù)特定的教學(xué)內(nèi)容、教學(xué)對象和教學(xué)環(huán)境對自己的教學(xué)工作作出計劃、實施和調(diào)整以及反思和總結(jié)。青年數(shù)學(xué)教師還必須更新教育理念,改變傳統(tǒng)的教學(xué)理念。只有不斷創(chuàng)新,努力提高自身素質(zhì),才能適應(yīng)新的形勢,符合建模發(fā)展的要求。(二)選取合適的教材。數(shù)學(xué)建模教材使用也存在諸多不足之處。絕大部分高校教學(xué)建模課程采用的是理工類專業(yè)數(shù)學(xué)建模教材。這些教材主要涵蓋的數(shù)學(xué)模型的難度系數(shù)大。而獨立院校的學(xué)生的基礎(chǔ)薄弱,無法接收這些模型。在教學(xué)過程中,教師可以將具體的案例或是歷年的數(shù)學(xué)建模題目做為教學(xué)內(nèi)容。通過具體的建模實例,講解建模的思想和方法。一邊講解,一邊讓學(xué)生分組討論,提出對問題的新的理解和對魔性的認(rèn)識,嘗試提出新的模型。(三)豐富建?;顒?。全面開展數(shù)學(xué)建?;顒邮菙?shù)學(xué)建模思想的最重要的形式,它既使課內(nèi)和課外知識相互結(jié)合,又可以普及建模知識與提高建模能力結(jié)合,可以培養(yǎng)學(xué)生利用數(shù)學(xué)知識分析和解決實際問題的能力,可以有效地提升了學(xué)生的數(shù)學(xué)綜合素質(zhì)。學(xué)??梢远ㄆ诘拈_展數(shù)學(xué)建模宣傳活動,擴大數(shù)學(xué)建模的知名度。學(xué)校還可以邀請有經(jīng)驗的專家和獲獎學(xué)生開展建模講座,提高對數(shù)學(xué)建模的重視,積極的組織建?;顒?。實踐證明,只有根據(jù)獨立院校的自身特點和培養(yǎng)目標(biāo),對數(shù)學(xué)建模課程的教學(xué)不斷進行改革,才能解決獨立院校數(shù)學(xué)建模課程教學(xué)的問題,才能真正的讓學(xué)生喜歡上數(shù)學(xué),喜歡上數(shù)學(xué)建模。
    [1]李大潛.將數(shù)學(xué)建模思想融入數(shù)學(xué)主干課程[j].中國大學(xué)教育.20xx.
    [2]賈曉峰等.大學(xué)生數(shù)學(xué)建模競賽與高等學(xué)校數(shù)學(xué)改革[j].工科數(shù)學(xué).20xx:162.
    [3]融入數(shù)學(xué)建模思想的高等數(shù)學(xué)教學(xué)研究[j].科技創(chuàng)新導(dǎo)報.20xx:162.
    作者:李雙單位:湖北文理學(xué)院理工學(xué)院
    數(shù)學(xué)建模論文篇二
    數(shù)學(xué)建模是銜接數(shù)學(xué)與應(yīng)用問題的橋梁,該課程主要培養(yǎng)學(xué)生的綜合素質(zhì)要求。本文針對于數(shù)學(xué)建模的課程考核問題進行探討,分析數(shù)學(xué)建模課程考核存在問題,改革思路,并提出多層次綜合考核方式,應(yīng)用于數(shù)學(xué)建模的課程考核,效果良好。
    數(shù)學(xué)建模;課程考核;創(chuàng)新能力
    數(shù)學(xué)建模是一門介紹數(shù)學(xué)知識應(yīng)用于解決實際問題的方法課程,該課程主要講授如何針對日常生活中的實際問題,做假設(shè)簡化并進行抽象提取,然后用數(shù)學(xué)表達式或者數(shù)學(xué)公式等將該問題表達出來,并求解該問題,從而達到解決實際問題的目的。數(shù)學(xué)建模的教學(xué)內(nèi)容包含常見數(shù)學(xué)模型的介紹、數(shù)學(xué)軟件編程和處理實際問題的數(shù)學(xué)方法。即數(shù)學(xué)建模是一門銜接數(shù)學(xué)與實際問題的應(yīng)用型課程,其教學(xué)、考核等都與其他數(shù)學(xué)課程不同。中共中央國務(wù)院《關(guān)于深化教育改革全面推進素質(zhì)教育的決定》明確指出:“高等教育要重視培養(yǎng)大學(xué)生的創(chuàng)新能力、實踐能力和創(chuàng)業(yè)精神,普遍提高大學(xué)生的人文素養(yǎng)和科學(xué)素質(zhì)?!碧貏e對于當(dāng)前處于經(jīng)濟結(jié)構(gòu)調(diào)整期,“中國制造”向“中國創(chuàng)造”轉(zhuǎn)型,國家需要大量的高素質(zhì)創(chuàng)新型人才。而高校是培養(yǎng)高素質(zhì)創(chuàng)新型人才的重要基地,需要改變原有的人才培養(yǎng)模式,提高學(xué)生的動手能力和綜合素質(zhì),培養(yǎng)適合經(jīng)濟發(fā)展需要的高素質(zhì)創(chuàng)新型人才。因此,本科教學(xué)中越來越重視培養(yǎng)學(xué)生收集處理信息的能力、獲取新知識的能力、分析和解決問題的能力、語言文字表達能力以及團結(jié)協(xié)作和社會活動的能力。數(shù)學(xué)建模競賽是利用數(shù)學(xué)知識解決實際問題的競賽活動,要求參賽學(xué)生利用三天三夜的時間完成數(shù)學(xué)建模競賽,整個競賽過程中學(xué)生需要分析問題、查找資料、建立模型、編程求解、撰寫建模論文等步驟。這些步驟要求參賽學(xué)生具有較強的信息收集、知識獲取、分析、編程、論文撰寫、團隊協(xié)作等能力。因此,數(shù)學(xué)建模競賽活動是培養(yǎng)學(xué)生各方面能力的競賽,也是全國參與人數(shù)最多、受益面最廣、舉辦時間最長的競賽活動之一。數(shù)學(xué)建模是信息與計算科學(xué)和應(yīng)用數(shù)學(xué)專業(yè)的專業(yè)必修課,參加數(shù)學(xué)建模競賽的必須培訓(xùn)課程,數(shù)學(xué)建模的考核不僅僅是給出該課程的成績,更重要的承擔(dān)為數(shù)學(xué)建模競賽選拔參賽人員的任務(wù)。本文針對數(shù)學(xué)建模的考核問題進行討論。
    (1)考核手段和目的存在誤區(qū)。傳統(tǒng)的考核方法注重于理論知識的檢驗,忽略了對學(xué)生創(chuàng)新意識、實踐能力的培養(yǎng)。同時,教育主管部門對于該課程的考核要求與其他課程類似,僅僅考核知識點的.掌握,忽視了該課程的開設(shè)目地,從而使得部分學(xué)生的利用數(shù)學(xué)方法解決實際問題的能力未能提高,沒有達到學(xué)習(xí)此課程的目的。(2)考核重結(jié)果,輕過程。目前,數(shù)學(xué)建模是考查課程,該課程的考核存在兩個極端:簡單根據(jù)學(xué)生的數(shù)學(xué)建模論文給予成績或試卷考試成績??己私Y(jié)果忽略了對學(xué)生的各方面能力的考察,導(dǎo)致開卷考試變成了學(xué)生的簡單應(yīng)付了事;而且部分考核只看最后的結(jié)果,而忽略了數(shù)學(xué)建模的整個訓(xùn)練過程。(3)考核方式單一。數(shù)學(xué)建模課程牽涉數(shù)學(xué)方法、編程能力、論文的寫作能力、及其綜合動手能力等。單純從試卷或最終數(shù)學(xué)建模論文不能體現(xiàn)學(xué)生的各種能力。導(dǎo)致學(xué)生的某一種能力掩蓋了其他能力的展現(xiàn),導(dǎo)致數(shù)學(xué)建模競賽學(xué)生選拔過程中存在一種現(xiàn)象:通過各種方式選拔的“優(yōu)秀”學(xué)生,真正參加數(shù)學(xué)建模競賽時,根本無法動手。(4)教學(xué)改革需要。隨著大數(shù)據(jù)、人工智能、深度學(xué)習(xí)等領(lǐng)域的興起,數(shù)學(xué)知識是解決此類實際問題的必須工具,解決該類問題的過程其實就是數(shù)學(xué)建模的過程。隨著“新工科”培養(yǎng)計劃的興起,數(shù)學(xué)、編程、寫作能力成為衡量人才的重要指標(biāo)。數(shù)學(xué)建模是銜接數(shù)學(xué)和實際問題的橋梁,設(shè)置合理的考核方式,體現(xiàn)學(xué)生多方面能力是數(shù)學(xué)建模課程考核改革的動力。
    (1)轉(zhuǎn)變教育觀念,樹立科學(xué)考核。數(shù)學(xué)建模是一門利用數(shù)學(xué)方法、計算機編程、論文寫作等方面知識解決實際問題的課程。該課程主要培養(yǎng)學(xué)生利用數(shù)學(xué)建模方法解決實際問題的能力。因此,任課教師改變課程考核等同于考試的觀念,將考核過程貫穿學(xué)生的學(xué)習(xí)階段,學(xué)習(xí)階段融入整個考核過程。從而避免教、考脫節(jié)的現(xiàn)象,形成教考相互融合,提高學(xué)生的積極性。(2)實施多元化考核,提高學(xué)生的動手能力。數(shù)學(xué)建模課程是綜合利用各種能力解決實際問題的方法論型課程,該課程的最終目的是培養(yǎng)學(xué)生的各種能力及其解決實際問題的綜合能力。包含多個知識點的試卷測試是應(yīng)試教育的體現(xiàn),不足以反映學(xué)生的動手能力。多元化的考核方式能促進教學(xué)過程逐步向以訓(xùn)練學(xué)生的解決實際問題能力為導(dǎo)向,激發(fā)學(xué)生的創(chuàng)新意識、鍛煉學(xué)生的實踐能力。(3)實施多元化考核,促進學(xué)生學(xué)風(fēng)。多元化考核將教學(xué)和考核的過程相互融合,學(xué)生的學(xué)習(xí)和考核交替進行,能夠促使學(xué)生、自我反省,發(fā)現(xiàn)自己學(xué)習(xí)的不足,及時改進。同時,教考融合能夠促使學(xué)生自發(fā)學(xué)習(xí),調(diào)到學(xué)生的學(xué)習(xí)積極性,避免出現(xiàn)“平時送、考前緊、考后忘”的現(xiàn)象。
    鑒于數(shù)學(xué)建模是利用計算機、數(shù)學(xué)解決實際問題的方法論文課程。該課程的教學(xué)過程包含介紹數(shù)學(xué)建模所用知識點和綜合利用各個知識點解決實際問題兩個階段。該課程考核改革主要訓(xùn)練學(xué)生綜合利用知識解決實際問題的能力,過程的訓(xùn)練是教學(xué)的重點??荚嚫母镄柝灤┯谠撜n程的具體教學(xué)過程,因此將考核分為階段考核、綜合考核、結(jié)課考核、參賽考核四種方式。(1)階段考核。數(shù)學(xué)建模的教學(xué)內(nèi)容包括編程語言介紹、數(shù)學(xué)建模方法介紹和數(shù)學(xué)論文寫作介紹幾個主要的方面。相應(yīng)地,編程能力、應(yīng)用數(shù)學(xué)建模能力和論文寫作能力的訓(xùn)練是數(shù)學(xué)建模的根本目的。因此,本項目擬根據(jù)數(shù)學(xué)建模的教學(xué)大綱安排,對每種能力進行單獨考核,結(jié)合每種能力的特點,設(shè)置不同的題目,考核每種能力的得分。根據(jù)教學(xué)進度發(fā)布測試題目,初步擬定每種能力的測試成績各占總成績的10%,共占總成績的30%。(2)綜合考核。數(shù)學(xué)建模是綜合運用各種能力的解決實際問題。在各種能力訓(xùn)練的基礎(chǔ)上,強化訓(xùn)練學(xué)生的綜合運用各種知識的能力。在此階段,從歷年數(shù)學(xué)建模題目和日常生活中挑出2~3個題目,進行適當(dāng)簡化處理,促使學(xué)生利用3~5天的時間完成一篇論文,進行點評評分,挑選部分典型論文進行講解;然后要求學(xué)生繼續(xù)完善論文,再次點評評分,如此循環(huán)多次。每個題目的成績約占總成績的10%,該階段共占總成績的30%。(3)結(jié)課考核。針對數(shù)學(xué)建模授課期間的知識點訓(xùn)練和綜合訓(xùn)練,最后仿照數(shù)學(xué)建模的參賽組織形式,從實際生活中挑選2個側(cè)重點不同的題目;同時,建議選課學(xué)生自由組合,3人一組,共同完成數(shù)學(xué)建模論文。該階段對前期訓(xùn)練的檢測,同時考核學(xué)生的團隊精神,最終論文的成績占總成績的40%。(4)參賽考核。數(shù)學(xué)建模課程可作為數(shù)學(xué)建模競賽的前期培訓(xùn),從選課選手中選取部分成績優(yōu)秀的學(xué)生,組織他們參加全國大學(xué)生數(shù)學(xué)建模競賽,競賽獲國家級獎,最終成績直接評為優(yōu)秀;廣西區(qū)級獎最終成績可直接評為良好。
    該考核方案在信息與計算科學(xué)專業(yè)的數(shù)學(xué)建模課程試用。教學(xué)中將考核過程融入教學(xué)過程,教學(xué)過程穿插考核,這樣能夠防止“考核型學(xué)習(xí)現(xiàn)象”,促使學(xué)生逐步向“學(xué)習(xí)型考核”轉(zhuǎn)變。同時,數(shù)學(xué)建模是應(yīng)用型課程,多元化考試能夠訓(xùn)練學(xué)生的應(yīng)用數(shù)學(xué)、計算機編程和論文書寫能力,單一考核不再適應(yīng),多元化考核能夠發(fā)現(xiàn)學(xué)生的優(yōu)點,促進教學(xué)過程轉(zhuǎn)變?yōu)椤耙阅芰閷?dǎo)向”,符合當(dāng)前的教育改革理念。數(shù)學(xué)建模講授的內(nèi)容有:線性規(guī)劃模型、非線性規(guī)劃模型、圖論模型(最短路模型、生成樹模型、網(wǎng)絡(luò)圖模型)、微分方程模型、差分方程模型、插值模型、擬合模型、回歸分析模型、因子分析模型、統(tǒng)計檢驗?zāi)P汀⒕C合評價模型、模擬仿真模型等模型及其相關(guān)算法的軟件編程。在教學(xué)安排中,對于數(shù)學(xué)模型部分盡可能講解數(shù)學(xué)建模中常見模型的建模方法、模型特點及其適應(yīng)范圍、該模型的求解算法等。對于涉及模型求解算法的理論及其具體的求解步驟略講或者不講解,對于調(diào)用軟件的算法集成命令及其調(diào)用方法等詳細(xì)介紹。對于數(shù)學(xué)建模論文寫作方面,通過閱讀優(yōu)秀論文,特別是我校20xx年的“matlab創(chuàng)新獎”論文。同時,選取部分簡單例題,根據(jù)完整數(shù)學(xué)建模論文的章節(jié)要求布置任務(wù),要求完成相應(yīng)論文。然后根據(jù)學(xué)生的完成情況,進行詳細(xì)點評,特別數(shù)學(xué)建模論文的寫作及其注意事項。學(xué)生主動完成平時練習(xí)的積極性高,80%的同學(xué)能夠按時完成布置的任務(wù)。剩下部分同學(xué)再經(jīng)過多次提醒之后也補交了布置的任務(wù)。從提交的作業(yè)發(fā)現(xiàn),大部分同學(xué)的作業(yè)都是自己認(rèn)真完成,少數(shù)同學(xué)是在參考他人的基礎(chǔ)之上完成。在課程結(jié)束后,參照數(shù)學(xué)建模的形式,要求同學(xué)們可以自由組隊,隊員人數(shù)為1~3人,根據(jù)人數(shù)的多少,設(shè)置不同的評價標(biāo)準(zhǔn)。為考查學(xué)生的學(xué)習(xí)情況,本人給出幾道歷年真題或類真題,這些題目是根據(jù)當(dāng)前的熱點新聞等經(jīng)過加工而提出。從學(xué)生提交的結(jié)課論文來看,已經(jīng)達到了預(yù)期效果,大部分同學(xué)具備了數(shù)學(xué)建模的基本素質(zhì),掌握了數(shù)學(xué)建模技巧,能夠完成數(shù)學(xué)建模論文。通過兩年的試用,信息與計算科學(xué)專業(yè)參加數(shù)學(xué)建模競賽的人數(shù)比往年增加20%,而獲得省(區(qū))級獎以上的獎項比往年增加40%。因此,說明數(shù)學(xué)建??己朔桨笇W(xué)生的評價具備一定的準(zhǔn)確性。
    為配合考核方案的實施,特擬定考核改革調(diào)查問卷,本人共做了兩次問卷調(diào)查,共收到近八十分問卷。問卷包括數(shù)學(xué)學(xué)習(xí)興趣、參加數(shù)學(xué)建模的積極性、考核嚴(yán)厲與否、考核方案認(rèn)同度等內(nèi)容。統(tǒng)計調(diào)查問卷發(fā)現(xiàn),學(xué)生對數(shù)學(xué)知識的學(xué)習(xí)興趣明顯提高,參加數(shù)學(xué)建模競賽的積極性也大幅度提高。并且大部分學(xué)生認(rèn)同考核方案,也贊成將考核過程與教學(xué)過程相結(jié)合。從調(diào)查問卷的統(tǒng)計結(jié)果看:有近70%的學(xué)生認(rèn)為該課程應(yīng)該嚴(yán)格考核;76%的學(xué)生認(rèn)同該考核方案。由此可見,數(shù)學(xué)建??己朔绞礁母锞哂幸欢ǖ耐茝V和實施價值(見圖1)。
    根據(jù)實施《數(shù)學(xué)建?!房己烁母锓桨傅膶W(xué)生反饋情況,總的來看,學(xué)生對考核方案比較認(rèn)同,也同意嚴(yán)格考核。從學(xué)生的參賽人數(shù)和獲獎比例也說明了該考核方案能有效提升學(xué)生的學(xué)習(xí)興趣,提高學(xué)生的各方面能力。
    [2]謝發(fā)忠,楊彩霞,馬修水.創(chuàng)新人才培養(yǎng)與高校課程考試改革[j].合肥工業(yè)大學(xué)學(xué)報,20xx.24(2):21-4.
    [3]李紅枝,毛建文,古宏標(biāo),黃榕波,邢德剛.創(chuàng)新意識和創(chuàng)新能力培養(yǎng)中高??荚嚫母锏奶剿鱗j].山西醫(yī)科大學(xué)學(xué)報,20xx.13(4):397-400.
    [5]蒲俊,張朝倫,李順初,付曉艦.地方綜合性大學(xué)理工科學(xué)生數(shù)學(xué)建模創(chuàng)新培養(yǎng)改革的探討[j].中國大學(xué)教學(xué),20xx.7:56-8.
    數(shù)學(xué)建模論文篇三
    在高等教育事業(yè)改革不斷深化的背景下,為了提升教育教學(xué)質(zhì)量,新時期對大學(xué)數(shù)學(xué)教學(xué)提出了更高的要求。大學(xué)數(shù)學(xué)作為課堂教學(xué)的主體,教師在傳授知識的同時,要注重學(xué)生學(xué)習(xí)能力和解決問題能力的培養(yǎng)。
    數(shù)學(xué)知識來源于生活,應(yīng)用于生活,如微積分作為高等數(shù)學(xué)知識中的典型代表,在各個行業(yè)中具有不可或缺的作用。為此,任課教師在大學(xué)數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生發(fā)現(xiàn)問題、分析問題和解決問題的能力十分重要,在傳授知識的過程中幫助學(xué)生利用所學(xué)知識來解決實際問題。一般情況下,教師著重介紹相關(guān)數(shù)學(xué)概念和原理,推導(dǎo)常用公式,促使學(xué)生能夠記住公式,學(xué)會公式的應(yīng)用過程,逐漸掌握解題技巧。
    因此,如何能夠在傳授知識的同時,促使學(xué)生掌握數(shù)學(xué)學(xué)習(xí)方法,將所學(xué)知識應(yīng)用到實踐中來解決數(shù)學(xué)問題是一個首要問題。從大量教學(xué)實踐中可以了解到,在大學(xué)數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)建模思想十分重要,有助于激發(fā)學(xué)生的學(xué)習(xí)興趣,促使學(xué)生積極投入其中,切實提升學(xué)生的數(shù)學(xué)專業(yè)水平。
    在大學(xué)數(shù)學(xué)教學(xué)中滲透數(shù)學(xué)建模思想,應(yīng)該結(jié)合實際情況,深入挖掘數(shù)學(xué)知識。在教學(xué)中,教師應(yīng)該充分發(fā)揮自身引導(dǎo)作用,聯(lián)系學(xué)生數(shù)學(xué)知識實際學(xué)習(xí)情況,有針對性地整合數(shù)學(xué)知識,了解相關(guān)數(shù)學(xué)內(nèi)容,這樣不僅可以豐富教學(xué)內(nèi)容,還可以為課堂教學(xué)注入新的活力,有效激發(fā)學(xué)生的學(xué)習(xí)興趣,提升學(xué)習(xí)成效。具體表現(xiàn)在以下方面:
    (一)閉區(qū)間連續(xù)函數(shù)的性質(zhì)
    閉區(qū)間連續(xù)函數(shù)的性質(zhì)內(nèi)容是大學(xué)數(shù)學(xué)教學(xué)中的重要組成部分,由于知識理論性較強,知識較為抽象,學(xué)習(xí)難度較大,在講解完相關(guān)理論知識后,可以引入椅子的穩(wěn)定問題,創(chuàng)建數(shù)學(xué)模型,提問學(xué)生如何在不平穩(wěn)的地面上平穩(wěn)地放置椅子。學(xué)生可以了解到這一問題同所學(xué)知識相關(guān)聯(lián),閉區(qū)間連續(xù)函數(shù)的性質(zhì)可以解決這一問題。學(xué)生整合所學(xué)知識,通過對問題的分析,可以了解到利用介值定理來解決問題。通過建立數(shù)學(xué)模型,學(xué)生更加充分地掌握了閉區(qū)間連續(xù)函數(shù)的`性質(zhì),提升了學(xué)習(xí)成效,為后續(xù)知識學(xué)習(xí)打下了堅實的基礎(chǔ)。
    (二)定積分
    定積分是高等數(shù)學(xué)教學(xué)中的重要組成部分,在解決幾何問題時均有所應(yīng)用,并且被廣泛應(yīng)用在實際生活中。如,在一道全國大學(xué)生數(shù)學(xué)建模競賽題目中,計算煤矸石的堆積,煤礦采煤時所產(chǎn)生的煤矸石,為了處理煤矸石就需要征用土地來堆放煤矸石,根據(jù)上級主管部門的年產(chǎn)量計劃和經(jīng)費如何堆放煤矸石?題目中的關(guān)鍵點在于堆放煤矸石的征地費用和電費的計算。征地費計算難度較小,但是煤矸石堆積的電費計算難度較高,但此項內(nèi)容涉及定積分中的變力做功知識點。學(xué)生掌握這些內(nèi)容后就可以建立數(shù)學(xué)模型,更加高效地了解如何根據(jù)預(yù)期開采量來堆放煤矸石。通過數(shù)學(xué)模型,學(xué)生也可以了解到定積分內(nèi)容同實際生活之間的聯(lián)系,學(xué)習(xí)積極性就會大大提升。
    (三)最值問題
    在高等數(shù)學(xué)中,最值問題占比比較大,同時在實際生活中應(yīng)用較為普遍,導(dǎo)數(shù)知識可以解決實際生活中的最值問題,這就需要提高對導(dǎo)數(shù)知識實際應(yīng)用的重視程度。教師在為學(xué)生講解完導(dǎo)數(shù)的相關(guān)概念知識后,通過建立關(guān)于天空的采空模型,提問學(xué)生為什么雨后太陽出來了,雨滴還在空中,那么將為人們呈現(xiàn)出什么樣的景色?學(xué)生回答彩虹。繼續(xù)提問彩虹為什么有顏色,是什么決定了天空中彩虹的高度?對此,學(xué)生的興趣較為濃厚,可以分為若干個小組進行討論。通過分析可以得出,雨滴可以反射太陽光,形成彩虹。結(jié)合光線的反射和折射定律,借助所學(xué)的導(dǎo)數(shù)知識來計算得出太陽光偏轉(zhuǎn)角度的最值,有效解決實際學(xué)習(xí)的問題,加深對知識的理解和記憶,提升數(shù)學(xué)知識學(xué)習(xí)成效。
    (四)微分方程
    微分方程知識同實際生活之間息息相關(guān),建立微分方程可以有效解決實際生活中的問題。這就需要學(xué)生在了解微分方程知識的基礎(chǔ)上,進一步建立數(shù)學(xué)模型來解決問題。如,在當(dāng)前社會進步和發(fā)展下,人均物質(zhì)生活水平顯著提升,肥胖成為危害人們身體健康的主要問題之一,受到社會各界廣泛的關(guān)注和重視。通過問題精簡化和假設(shè),可以得到微分方程模型,在分析方程中飲食控制和運動鍛煉兩個關(guān)鍵要素后,有助于避免人們走入減肥誤區(qū),幫助他們樹立正確的減肥理念。
    (五)矩陣
    在高等數(shù)學(xué)教學(xué)中,矩陣的概念較為抽象和復(fù)雜,在講解問題之前,應(yīng)該根據(jù)知識點來創(chuàng)設(shè)教學(xué)情境,輔助教學(xué)活動。通過引入企業(yè)工廠生產(chǎn)總成本模型,充分描述工廠生產(chǎn)中需要的原材料和勞動力,并且詳細(xì)記錄管理費用。這有助于加深人們對矩陣概念的認(rèn)知和理解,提升學(xué)習(xí)成效,同時幫助學(xué)生深入理解和記憶,鍛煉學(xué)生的數(shù)學(xué)解題思維,加深概念理解和記憶,掌握解題技巧和方法,從而提升學(xué)生的數(shù)學(xué)建模意識。
    綜上所述,在大學(xué)數(shù)學(xué)教學(xué)中,可以通過數(shù)學(xué)建模思想來引導(dǎo)學(xué)生養(yǎng)成良好的自主學(xué)習(xí)能力,發(fā)揮自身的主體能動性和創(chuàng)新能力,提升學(xué)生解決問題的能力,將所學(xué)知識靈活運用到實際生活中,養(yǎng)成良好的數(shù)學(xué)素養(yǎng)。
    數(shù)學(xué)建模論文篇四
    為了培養(yǎng)小學(xué)生良好的數(shù)學(xué)學(xué)習(xí)興趣,激發(fā)他們的數(shù)學(xué)潛能,教師需要采取必要的措施注重數(shù)學(xué)建模思想的有效培養(yǎng),促進學(xué)生的全面發(fā)展。在制定相關(guān)培養(yǎng)策略的過程中,教師應(yīng)充分考慮小學(xué)生的性格特點,提高數(shù)學(xué)建模思想培養(yǎng)的有效性?;诖耍恼聦牟煌姆矫鎸πW(xué)生數(shù)學(xué)建模思想的培養(yǎng)策略進行初步的探討。
    作為小學(xué)數(shù)學(xué)教學(xué)中的重要組成部分,數(shù)學(xué)建模思想的滲透及相關(guān)教學(xué)活動的順利開展,有利于提高復(fù)雜數(shù)學(xué)問題的處理效率,保持?jǐn)?shù)學(xué)課堂教學(xué)的高效性。要實現(xiàn)這樣的發(fā)展目標(biāo),增強小學(xué)生數(shù)學(xué)建模思想的實際培養(yǎng)效果,需要加強對學(xué)生動手實踐能力的培養(yǎng),激發(fā)學(xué)生的更高興趣。建模的過程涉及問題表述、求解、必要解釋及有效驗證,在這四個環(huán)節(jié)中,可能會存在一定的問題,影響著數(shù)學(xué)教學(xué)計劃的實施。因此,教師需要利用學(xué)生動手實踐能力的作用,實現(xiàn)數(shù)學(xué)建模思想的有效培養(yǎng),促使小學(xué)生能夠在數(shù)學(xué)建模過程中享受到更多的快樂。比如,在講解“認(rèn)識角”知識的過程中,某些學(xué)生認(rèn)為邊越長角度也越大。為了使學(xué)生能夠?qū)ζ渲械闹R點有更加正確而全面的認(rèn)識,教師可以通過在黑板上設(shè)置一些能夠活動的三角板,讓學(xué)生親自動手操作,以此得出角與邊長的正確關(guān)系,為后續(xù)教學(xué)計劃的實施打下堅實的基礎(chǔ)。通過這種教學(xué)方法的合理運用,可以激發(fā)出學(xué)生們在數(shù)學(xué)建模學(xué)習(xí)中的更高興趣,豐富他們的想象力,從而使他們對數(shù)學(xué)建模思想有一定的了解,在未來學(xué)習(xí)過程中能夠保持良好的`數(shù)學(xué)建模能力。
    通過對小學(xué)階段各種數(shù)學(xué)實踐教學(xué)活動實際概況的深入分析,可知構(gòu)建良好的數(shù)學(xué)模型有利于加深學(xué)生對各知識(福建省莆田市秀嶼區(qū)東嶠前江小學(xué),福建莆田351164)點的深入理解,增強其主動參與數(shù)學(xué)建模教學(xué)活動的積極性。因此,為了使小學(xué)生數(shù)學(xué)建模思想培養(yǎng)能夠達到預(yù)期的效果,教師需要結(jié)合實際的教學(xué)內(nèi)容,建立必要的數(shù)學(xué)參考模型,提升學(xué)生對數(shù)學(xué)建模思想的整體認(rèn)知水平。比如,在講授“異分母分?jǐn)?shù)加減法”這部分知識的過程中,可以設(shè)置“0.8千克+300克”“1.6千克-400克”等問題,向?qū)W生提問是否可以直接計算,并說出原因。當(dāng)學(xué)生通過對問題的深入思考,總結(jié)出“單位不同不能直接計算”的結(jié)論后,繼續(xù)向?qū)W生提問小數(shù)計算中為什么每一位都要對齊,實現(xiàn)“計數(shù)單位統(tǒng)一后才能計算”這一數(shù)學(xué)模型的構(gòu)建。在這樣的教學(xué)過程中,學(xué)生可以加深對知識點的理解,實現(xiàn)數(shù)學(xué)建模思想的有效培養(yǎng)。
    加強小學(xué)生數(shù)學(xué)建模思想的有效培養(yǎng),需要在具體的教學(xué)活動開展中注重對數(shù)學(xué)思想的靈活運用,增強相關(guān)模型構(gòu)建的可靠性,促使學(xué)生在長期的數(shù)學(xué)學(xué)習(xí)中能夠不斷提高自身的數(shù)學(xué)能力,運用各種數(shù)學(xué)知識處理實際問題。比如,在“角的度量”這部分內(nèi)容講解的過程中,為了提高學(xué)生對角的分類及畫角相關(guān)知識點的深入理解,教師可以將所有的學(xué)生分為不同的小組,讓學(xué)生們通過小組討論的方式,對角的正確分類及如何畫角有一定的了解,并讓每個小組代表在講臺上演示畫角的過程。此時,教師可以通過對多媒體教學(xué)設(shè)備的合理運用,利用動態(tài)化的文字與圖片對其中的知識要點進行展示,確保學(xué)生們能夠在良好的教學(xué)模式中提升自身的認(rèn)知水平,并在不斷的思考過程中逐漸形成良好的創(chuàng)造性思維,強化自身的創(chuàng)新意識。比如,在講解“圖形變換”中的軸對稱、旋轉(zhuǎn)知識點的過程中,教師應(yīng)通過對學(xué)生的正確引導(dǎo),運用三角板、圓柱等教學(xué)輔助工具,讓學(xué)生從不同的角度對各種軸對稱圖形、旋轉(zhuǎn)后得到的圖形進行深入思考,提高自身數(shù)學(xué)建模過程中的創(chuàng)新能力,從不同的角度深入理解圖像變換過程,對這部分內(nèi)容有更多的了解。因此,教師應(yīng)注重小學(xué)生數(shù)學(xué)建模思想培養(yǎng)中多方位思考方式的針對性培養(yǎng),提高學(xué)生的創(chuàng)新能力,優(yōu)化學(xué)生的思維方式,全面提升小學(xué)數(shù)學(xué)建模教學(xué)水平。
    總之,加強小學(xué)生數(shù)學(xué)建模思想培養(yǎng)策略的制定與實施,有利于滿足素質(zhì)教育的更高要求,實現(xiàn)對小學(xué)生數(shù)學(xué)能力的有效鍛煉,確保相關(guān)的教學(xué)計劃能夠在規(guī)定的時間內(nèi)順利地完成。與此同時,結(jié)合當(dāng)前小學(xué)數(shù)學(xué)教育教學(xué)的實際發(fā)展概況,可知靈活運用各種科學(xué)的數(shù)學(xué)建模思想培養(yǎng)策略,有利于滿足學(xué)生數(shù)學(xué)建模學(xué)習(xí)中的多樣化需求,為相關(guān)教學(xué)目標(biāo)的順利實現(xiàn)提供可靠的保障。
    [1]童小艷.小學(xué)數(shù)學(xué)教學(xué)中培養(yǎng)學(xué)生建模思想的策略[j].學(xué)子(教育新理念),20xx(6).
    [2]白寧.先學(xué)而后教——小學(xué)生數(shù)學(xué)建模思想培養(yǎng)的捷徑[j].數(shù)學(xué)學(xué)習(xí)與研究,20xx(16).
    數(shù)學(xué)建模論文篇五
    問題教學(xué)法是一種新的教學(xué)模式,與傳統(tǒng)教學(xué)有很大的區(qū)別。在傳統(tǒng)的教學(xué)中,教師考慮最多的是“教什么、怎樣教”的問題,很少顧及學(xué)生“學(xué)什么、怎樣學(xué)”,限制了學(xué)生學(xué)習(xí)的主動性和創(chuàng)造性。[1]為了改變這種現(xiàn)狀,美國神經(jīng)病學(xué)教授howardbarrows于1969年創(chuàng)立了基于問題和項目的學(xué)習(xí)(problembasedlearning)理念教學(xué)法。[2]這種方法不像傳統(tǒng)教學(xué)模式那樣先學(xué)習(xí)理論知識再解決問題,而是讓學(xué)生圍繞問題尋求解決方案。它強調(diào)讓學(xué)生置身于復(fù)雜的、有意義的問題情境中,并讓學(xué)生成為該問題情境的主體,自己去分析問題,學(xué)習(xí)解決該問題所需的知識,進而通過合作解決問題。此外,教師在該過程中也可以通過提問的方式,不斷地激發(fā)學(xué)生去思考、探索,培養(yǎng)學(xué)生自主學(xué)習(xí)的能力。與傳統(tǒng)的教學(xué)模式相比,問題教學(xué)模式更注重對學(xué)生自學(xué)能力、創(chuàng)新能力、發(fā)現(xiàn)問題和解決問題能力的培養(yǎng)。問題教學(xué)模式剛開始主要被應(yīng)用于醫(yī)學(xué)、市場營銷、實驗教學(xué)、畢業(yè)論文的寫作等領(lǐng)域。[3]近年來,一些學(xué)者開始探索將這種教學(xué)模式引入到“數(shù)學(xué)建?!闭n程的教學(xué)中。黃河科技學(xué)院從20xx級信息與計算科學(xué)專業(yè)的學(xué)生開始,在“數(shù)學(xué)建模”教學(xué)活動引入問題教學(xué)模式,已經(jīng)取得了初步的成效。
    1.教師提出問題
    教師在每次上課之前要精心設(shè)計適合學(xué)生自學(xué)的問題體系,目的是為了誘導(dǎo)學(xué)生的思維,激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生置身于特定的問題環(huán)境中,營造一種質(zhì)疑、探究、討論、和諧互動的學(xué)習(xí)氛圍。這一步驟要求教師不僅需要熟悉教學(xué)內(nèi)容,還必須更好地了解學(xué)生的實際情況,這是成功實施問題教學(xué)模式的基礎(chǔ)。
    2.積極分析問題
    問題教學(xué)法的基本特點是教學(xué)環(huán)節(jié)由一連串問題組成,并且問題與問題之間的`聯(lián)系具有鏈接性和層次性。前一個問題是后一個問題的鋪墊,后一個問題又是前一個問題的深化和拓展。在學(xué)生熟悉了相關(guān)知識的基礎(chǔ)上,根據(jù)給出的實際問題,教師引導(dǎo)學(xué)生進行探索。探索活動一般包括自學(xué)教材、觀察實驗、小組討論等方式。學(xué)生一方面要充分利用原有認(rèn)知結(jié)構(gòu)中存儲的有關(guān)知識信息,另一方面可以利用教材、實驗或教師提供的閱讀材料,獲取解決問題的方法。在對問題討論中教師要創(chuàng)設(shè)和諧民主的教學(xué)環(huán)境,要讓學(xué)生充分發(fā)表自己的見解,大膽質(zhì)疑,相互答辯,相互啟發(fā)。
    3.解決問題
    當(dāng)所有學(xué)生都對問題的解決方案有了一定的思路之后,教師組織課堂發(fā)言。讓每一小組推薦一位表達能力強的學(xué)生,在課堂上把他們對解決問題的方法及結(jié)論的合理性進行講解。在每組講解完之后,其他學(xué)生可以對他們進行提問,而發(fā)言小組的學(xué)生要向其他同學(xué)和老師進行解釋。教師在主持和引導(dǎo)的同時,也可以向?qū)W生提問。這樣通過對一個又一個問題的提問,推動學(xué)生思考,將問題引向縱深層次,一步步朝著解決問題的方向發(fā)展。
    4.對問題的結(jié)果進行評價
    問題教學(xué)法不僅以問題為開端,還以問題為終結(jié)。教學(xué)的最終結(jié)果不是傳授知識來消滅問題,而是在解決已有問題的基礎(chǔ)上引發(fā)更多、更廣泛的問題。因此教師在對問題的結(jié)果進行總結(jié)時要注意引導(dǎo)學(xué)生反思“這個問題為什么要這樣解決”,“這個問題還可以怎樣解決”,“從解決這個問題中我學(xué)到了什么”以及“這種解決方案還有什么不足之處”等等,從而激發(fā)他們提出新的問題,這是問題教學(xué)中最重要、最有教益的一個方面。
    在基于問題教學(xué)的過程中,每次討論的問題都圍繞某一專題進行討論學(xué)習(xí),下面以“公平的席位分配問題”[4]為例,說明在“數(shù)學(xué)建?!敝腥绾芜\用問題教學(xué)法。
    1.合理設(shè)計問題
    獎學(xué)金評定是學(xué)生比較關(guān)心的問題,筆者根據(jù)學(xué)生的興趣及認(rèn)知水平選擇“獎學(xué)金名額分配問題”。設(shè)某校有5個系a、b、c、d、e,各系學(xué)生數(shù)分別為345、72、894、68、39,現(xiàn)在有74個獎學(xué)金名額,問每個系分配幾個名額比較公平?[5]在給出問題后,我們將相關(guān)問題印發(fā)給學(xué)生,并讓學(xué)生課下先收集關(guān)于“公平的席位分配問題”的模型及相關(guān)求解方法并認(rèn)真研讀。
    2.小組討論分析問題
    根據(jù)課下學(xué)生收集的求解方案,上課時首先以小組為單位初步討論。首先提出如果讓同學(xué)們進行分配的話,他們會使用什么方法進行分配,讓他們進行討論。學(xué)生首先會給出比例分配方案,如果按人數(shù)比例分配到各系的名額恰好都是整數(shù),可以得到完全公平的分配方案。但在很多情況下,按人數(shù)比例分配到各系的名額帶有小數(shù)。比如在這個問題中各系分配的名額數(shù)分別為:18.00、3.76、46.65、3.55、2.04,有小數(shù)部分??梢韵劝颜麛?shù)分配完,這時各系分配的名額數(shù)為:18、3、46、3、2。共分配了72名額,還有2個名額該如何分配?大家經(jīng)過討論,會提出誰的小數(shù)部分大就把名額給誰的分配方案,于是第73個名額給b系,第74個名額給c系。最終的方案是各系名額數(shù)分別為:18、4、47、3、2。接著老師會提出下面的問題,這種分配方案對誰最不公平?學(xué)生會進一步討論每個名額代表的人數(shù),a為19.17人,b為18人,c為19.02人,d為22.67人,e為19.5人,說明這種分配方案對d系最不公平,而b系最占便宜,兩個系中每個名額代表的人數(shù)相差了4.67人。那么要重點討論有沒有相對來說比較公平的席位分配方案。
    3.學(xué)生進行發(fā)言討論
    在所有小組都討論完之后,教師組織各組學(xué)生進行課堂發(fā)言和討論,讓每組選一人報告本小組討論結(jié)果。教師對各組的報告進行評價,指出在討論過程中的問題及不足之處。在這個問題中,學(xué)生根據(jù)課下收集的文獻資料會逐步提出q值分配方案,q值分配方案的改進,q值+d’hondt分配方案,席位分配的平均公平度方案等等。每種方案都是前面方案的改進,最后我們提出問題,這些分配方案公平度如何?讓學(xué)生逐一討論,從而營造出一個討論主題鮮明、學(xué)習(xí)氛圍良好的課堂環(huán)境。
    4.教師對結(jié)果進行評價總結(jié)
    在這個問題中,經(jīng)過逐一討論,大部分學(xué)生認(rèn)為問題已經(jīng)圓滿解決了,不會再對結(jié)果進行歸納整理,不會反思問題解決的思路。因此在最初的問題解決后,老師要引導(dǎo)學(xué)生進行評價總結(jié),比如:“各個方案的公平度如何”,“我們還有沒有更公平的分配方案”,“公平的席位分配方案應(yīng)滿足什么原則”等等。
    從“公平的席位分配問題”這個案例可以看到,在教學(xué)中為學(xué)生設(shè)計一個真實的問題進行教學(xué),學(xué)生可以通過真實問題進行學(xué)習(xí),并且以一個真實問題的解決為主線,激發(fā)學(xué)生的學(xué)習(xí)興趣和探索精神,再通過結(jié)果反饋信息,引導(dǎo)學(xué)生逐步深入理解學(xué)習(xí)內(nèi)容。學(xué)生在研究問題的過程中不僅學(xué)習(xí)了課本上的知識,而且還親身體會了解決實際問題的樂趣,為學(xué)生以后自主學(xué)習(xí)提供了極大的幫助。[6]四、結(jié)語當(dāng)然,在“數(shù)學(xué)建?!闭n程的教學(xué)過程中問題教學(xué)模式也存在不足之處,比如課程內(nèi)容多、課時少,問題討論時間和講授時間出現(xiàn)矛盾,對有的專題討論不夠深入,學(xué)生參與度不夠,學(xué)生發(fā)言的深度和廣度都有待于進一步提高等等。這需要教師認(rèn)真歸納講課內(nèi)容,盡量分離出較多比較有吸引力的專題供學(xué)生討論,以問題為中心規(guī)劃教學(xué)內(nèi)容,讓學(xué)生圍繞問題尋求解決方案,從而提高學(xué)生學(xué)習(xí)的主動性,提高學(xué)生在教學(xué)過程中的參與程度,激發(fā)學(xué)生的求知欲?!皵?shù)學(xué)建?!闭n程教學(xué)的本身就是一個不斷探索、創(chuàng)新和提高的過程,選擇正確有效的教學(xué)方法能更好培養(yǎng)學(xué)生的創(chuàng)新能力,激發(fā)學(xué)生對數(shù)學(xué)建模的興趣。
    數(shù)學(xué)建模論文篇六
    數(shù)學(xué),源于人們對生產(chǎn)與生活實際問題,抽象出的數(shù)量關(guān)系與空間結(jié)構(gòu)發(fā)展而成的.近年來,信息技術(shù)飛速發(fā)展,推動了應(yīng)用數(shù)學(xué)的發(fā)展,使數(shù)學(xué)日益滲透到社會各個領(lǐng)域.中考實際應(yīng)用題目更貼近日常生活,具有時代性、靈活性,涉及的模型有方程、函數(shù)、不等式、統(tǒng)計、幾何等模型.數(shù)學(xué)課程標(biāo)準(zhǔn)指出,教師在教學(xué)中應(yīng)引導(dǎo)學(xué)生從實際背景中理清數(shù)學(xué)關(guān)系、把握變化規(guī)律,能從實際問題中建立數(shù)學(xué)模型.教師要為學(xué)生創(chuàng)造用數(shù)學(xué)的氛圍,引導(dǎo)學(xué)生參與自主學(xué)習(xí)、自主探索、自主提問、自主解決,體驗做數(shù)學(xué)的過程,從而提高解決實際問題的能力.
    一、影響數(shù)學(xué)建模教學(xué)的成因探析
    一是教師未能實現(xiàn)角色轉(zhuǎn)換.建模教學(xué)離不開學(xué)生“做”數(shù)學(xué)的過程,因而教師在教學(xué)中要留有讓學(xué)生思考、想象的空間,讓他們自主選擇方法.然而部分教師對學(xué)生缺乏信任,由“引導(dǎo)者”變?yōu)椤肮噍斦摺保瑢⒔忸}過程直接教給學(xué)生,影響了學(xué)生建模能力的提高.二是教師的專業(yè)素養(yǎng)有待提高.開展建模教學(xué),需要教師具有一定的專業(yè)素養(yǎng),能駕馭課堂教學(xué),激發(fā)學(xué)生的興趣,啟發(fā)學(xué)生進行思考,誘發(fā)學(xué)生進行探索,但是部分教師專業(yè)素養(yǎng)有待提高,或認(rèn)為建模就是解應(yīng)用題,或重生活味輕數(shù)學(xué)味,或使討論活動流于形式.三是學(xué)生的抽象能力較差.在建模教學(xué)中,教師須呈現(xiàn)生活中的實際問題,其題目長、信息量大、數(shù)據(jù)多,需要學(xué)生經(jīng)歷閱讀提取有用的信息,但是部分學(xué)生感悟能力差,不能明析已知與未知之間的關(guān)系,影響了學(xué)生成功建模.
    二、數(shù)學(xué)建模教學(xué)的有效原則
    1.自主探索原則.
    學(xué)生長期處于師講、生聽的教學(xué)模式,淪為被動接受知識的“容器”,難有創(chuàng)造的意識.在教學(xué)中,教師要為學(xué)生創(chuàng)設(shè)輕松愉悅的探究氛圍,讓學(xué)生手腦并用,在探索、交流、操作中提高解決問題的`能力.
    2.因材施教原則.
    教師要著眼于學(xué)生原有的認(rèn)知結(jié)構(gòu),要貼近學(xué)生的最近發(fā)展區(qū),引導(dǎo)他們從舊知的角度思考,找出問題的解決方法。
    3.可接受性原則.
    數(shù)學(xué)建模內(nèi)容的設(shè)計,要符合學(xué)生的年齡特點和認(rèn)知能力,能讓學(xué)生理解所探究的內(nèi)容.若設(shè)計的問題不切實際,往往會扼殺學(xué)生的興趣,教師要密切聯(lián)系教學(xué)內(nèi)容、生活實際,讓學(xué)生有能力解決問題.
    數(shù)學(xué)建模論文篇七
    信息化時代,數(shù)學(xué)科學(xué)與其他學(xué)科交叉融合,使得數(shù)學(xué)技術(shù)變成了一種普適性的關(guān)鍵技術(shù)。大學(xué)加強數(shù)學(xué)課程的應(yīng)用功能,不但可以為學(xué)生提供解決問題的思想和方法,而且更為重要的是可以培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)科學(xué)進行定量化、精確化思維的意識,學(xué)會創(chuàng)造性地解決問題的應(yīng)用能力。數(shù)學(xué)建模課程將數(shù)學(xué)的基本原理、現(xiàn)代優(yōu)化算法以及程序設(shè)計知識很好地融合在一起,有助于培養(yǎng)學(xué)生綜合應(yīng)用數(shù)學(xué)知識將現(xiàn)實問題化為數(shù)學(xué)問題,并進行求解運算的能力,激發(fā)學(xué)生對解決現(xiàn)實問題的探索欲望,強化數(shù)學(xué)課程本身的應(yīng)用功能,凸顯數(shù)學(xué)課程的教育價值,適應(yīng)大學(xué)數(shù)學(xué)課程以培養(yǎng)學(xué)生創(chuàng)新意識為宗旨的教育改革需要。
    大學(xué)傳統(tǒng)的數(shù)學(xué)主干課程,如高等數(shù)學(xué)、線性代數(shù)、概率論與數(shù)理統(tǒng)計在奠定學(xué)生的數(shù)學(xué)基礎(chǔ)、培養(yǎng)自學(xué)能力以及為后續(xù)課程的學(xué)習(xí)在基礎(chǔ)方面發(fā)揮奠基作用。但是,這種原有的教學(xué)模式重在突出培養(yǎng)學(xué)生嚴(yán)格的邏輯思維能力,而對數(shù)學(xué)的應(yīng)用重視不夠,這使得學(xué)生即使掌握了較為高深的數(shù)學(xué)理論,卻并不能將其靈活應(yīng)用于現(xiàn)實生活解決實際問題,更是缺乏將數(shù)學(xué)應(yīng)用于專業(yè)研究和軍事工程的能力,與創(chuàng)新教育的基本要求差距甚遠(yuǎn)。教育轉(zhuǎn)型要求數(shù)學(xué)教學(xué)模式從傳統(tǒng)的傳授知識為主向以培養(yǎng)能力素質(zhì)為主轉(zhuǎn)變,特別是將數(shù)學(xué)建模的思想方法融入到數(shù)學(xué)主干課程之中,在教學(xué)過程中引導(dǎo)學(xué)生將數(shù)學(xué)知識內(nèi)化為學(xué)生的應(yīng)用能力,充分發(fā)揮數(shù)學(xué)建模思想在數(shù)學(xué)教學(xué)過程中的引領(lǐng)作用。數(shù)學(xué)課程教學(xué)改革要適應(yīng)這一教學(xué)模式轉(zhuǎn)型需要,深入探究融入式教學(xué)模式的理論與方式,是推進數(shù)學(xué)教育改革的重要舉措。
    2.1理清數(shù)學(xué)建模思想方法與數(shù)學(xué)主干課程的關(guān)系。數(shù)學(xué)主干課程提供了大學(xué)數(shù)學(xué)的基礎(chǔ)理論與基本原理,將數(shù)學(xué)建模的思想方法有機地融入到數(shù)學(xué)主干課程中,不但可以有效地提升數(shù)學(xué)課程的應(yīng)用功能,而且有利于深化學(xué)生對數(shù)學(xué)本原知識的理解,培養(yǎng)學(xué)生的綜合應(yīng)用能力。深入研究數(shù)學(xué)主干課程的功能定位,主要從課程目標(biāo)上的一致性、課程內(nèi)容上的互補性、學(xué)習(xí)形式上的互促性、功能上的整體優(yōu)化性等方面,研究數(shù)學(xué)建模本身所承載的思想、方法與數(shù)學(xué)主干課程的內(nèi)容與邏輯關(guān)系,闡述數(shù)學(xué)建模思想方法對提高學(xué)生創(chuàng)新能力和對數(shù)學(xué)教育改革的重要意義,探索開展融入式教學(xué)及創(chuàng)新數(shù)學(xué)課程教學(xué)模式的有效途徑。
    2.2探索融入式教學(xué)模式提升數(shù)學(xué)主干課程應(yīng)用功能的方式。融入式教學(xué)主要有輕度融入、中度融入和完全融入三種方式。根據(jù)主干課程的基本特點,對課程體系進行調(diào)整,在問題解決過程中安排需要融入的知識體系,按照三種方式融入數(shù)學(xué)建模的思想與方法。以學(xué)生能力訓(xùn)練為主導(dǎo),在培養(yǎng)深厚的數(shù)學(xué)基礎(chǔ)和嚴(yán)格的邏輯思維能力的基礎(chǔ)上,充分發(fā)揮數(shù)學(xué)建模思想方法對學(xué)生思維方式的培養(yǎng)功能和引導(dǎo)作用,培養(yǎng)學(xué)生敏銳的分析能力、深刻的'歸納演繹能力以及將數(shù)學(xué)知識應(yīng)用于工程問題的創(chuàng)新能力。
    2.3建立數(shù)學(xué)建模思想方法融入數(shù)學(xué)主干課程的評價方式。融入式教學(xué)是處于探索中的教學(xué)模式,教學(xué)成效有待于實踐檢驗。選取開展融入式教學(xué)的實驗班級,對數(shù)學(xué)建模思想方法融入主干課程進行教學(xué)效果實踐驗證。設(shè)計相應(yīng)的考察量表,從運用直覺思維深入理解背景知識、符號翻譯開展邏輯思維、依托圖表理順數(shù)量關(guān)系、大膽嘗試進行建模求解等多方面對實驗課程的教學(xué)效果進行檢驗,深入分析融入式教學(xué)模式的成效與不足,為探索有效的教學(xué)模式提出改進的對策。
    3.1改革課程教學(xué)內(nèi)容,滲透數(shù)學(xué)建模的思想方法。傳統(tǒng)的數(shù)學(xué)主干課程教學(xué)內(nèi)容,將數(shù)學(xué)看作嚴(yán)謹(jǐn)?shù)难堇[體系,教學(xué)過程中著力于對學(xué)生傳授大學(xué)數(shù)學(xué)的基礎(chǔ)知識,而對應(yīng)用能力的培養(yǎng)卻重視不夠。使得本應(yīng)能夠發(fā)揮應(yīng)用功能的數(shù)學(xué)知識則淪為僵死的教條性數(shù)學(xué)原理,這失去了教學(xué)的活力。學(xué)生即使掌握了再高深的數(shù)學(xué)知識,仍難以學(xué)會用數(shù)學(xué)的基本方法解決現(xiàn)實問題。現(xiàn)行的大學(xué)數(shù)學(xué)課程教學(xué)內(nèi)容中,適當(dāng)?shù)貪B透一些應(yīng)用性比較廣泛的數(shù)學(xué)方法,如微元法、迭代法及最佳逼近等方法,有利于促進學(xué)生對數(shù)學(xué)基礎(chǔ)知識的掌握,同時理解數(shù)學(xué)原理所蘊涵的思想與方法。
    這樣,在解決實際問題的時候,學(xué)生就會有意識地從數(shù)學(xué)的角度進行思考,嘗試建立相應(yīng)的數(shù)學(xué)模型并進行求解,拓展了數(shù)學(xué)知識的深度與廣度,提升了學(xué)生的數(shù)學(xué)應(yīng)用能力四、結(jié)語數(shù)學(xué)建模是數(shù)學(xué)科學(xué)在科技、經(jīng)濟、軍事等領(lǐng)域廣泛應(yīng)用的接口,是數(shù)學(xué)科學(xué)轉(zhuǎn)化成科學(xué)技術(shù)的重要途徑。在數(shù)學(xué)主干課程中融入數(shù)學(xué)建模的思想與方法,可以推動大學(xué)數(shù)學(xué)教育改革的深入發(fā)展,加深學(xué)生對相關(guān)知識的理解和掌握,有助于從思維方式上培養(yǎng)學(xué)生的創(chuàng)新意識與創(chuàng)新能力。
    此外,數(shù)學(xué)建模思想方法融入教學(xué)主干課程還涉及到許多問題,比如數(shù)學(xué)建模與計算技術(shù)如何有效結(jié)合以進行模擬仿真、融入式教學(xué)模式的基本理論、構(gòu)建新的課程體系等問題,仍將有待于更深入的研究。
    數(shù)學(xué)建模論文篇八
    計算數(shù)學(xué)建模是用數(shù)學(xué)的思考方式,采用數(shù)學(xué)的方法和語言,通過簡化,抽象的方式來解決實際問題的一種數(shù)學(xué)手段。數(shù)學(xué)建模所解決的問題不止現(xiàn)實的,還包括對未來的一種預(yù)見。數(shù)學(xué)建??梢哉f和我們的生活息息相關(guān),尤其是如今科技發(fā)達的今天。數(shù)學(xué)建模應(yīng)用領(lǐng)域超乎我們的想象,甚至達到無所不及的程度,隨著數(shù)學(xué)建模在大學(xué)教學(xué)中的廣泛使用,使數(shù)學(xué)建模不止成為一種學(xué)科,更重要的是指導(dǎo)新生代更好的利用現(xiàn)代科學(xué)技術(shù),成為高科技人才,把我國人才強國,科教興國的戰(zhàn)略推向一個新的高度。
    1.1數(shù)學(xué)建模引進大學(xué)數(shù)學(xué)教學(xué)的必要。教學(xué)過程,是教師根據(jù)社會發(fā)展要求和當(dāng)代學(xué)生身心發(fā)展的特點,借助教學(xué)條件,指導(dǎo)學(xué)生通過認(rèn)識教學(xué)內(nèi)容從而認(rèn)識客觀世界,并在此基礎(chǔ)之上發(fā)展自身的過程,即教學(xué)活動的展開過程。以往高工專的數(shù)學(xué)教學(xué)存在著知識單一,內(nèi)容陳舊,脫離實際等缺陷,已經(jīng)不能滿足時代的發(fā)展,如今的數(shù)學(xué)教學(xué)過程不是單純的傳授數(shù)學(xué)學(xué)科知識,而是通過數(shù)學(xué)教學(xué)過程引導(dǎo)學(xué)生認(rèn)識科學(xué),理解科學(xué),從而指導(dǎo)實踐,促進學(xué)生的德智體美勞全面的進步和發(fā)展。因此數(shù)學(xué)建模成為一門學(xué)科,被各大高等院校廣泛引用和推廣,其實數(shù)學(xué)建模不止應(yīng)用在大學(xué)數(shù)學(xué)教學(xué)中,其他一切教學(xué)過程多可引進數(shù)學(xué)建模。1.2數(shù)學(xué)建模在大學(xué)數(shù)學(xué)教學(xué)中的運用。大學(xué)數(shù)學(xué)教師通過這個數(shù)學(xué)建模過程來引導(dǎo)學(xué)生解決問題和指導(dǎo)實踐的能力。再次建模結(jié)果對現(xiàn)實生活的指導(dǎo),這是大學(xué)數(shù)學(xué)教學(xué)中數(shù)學(xué)建模所需要達到的效果和要求。不再停留在理論學(xué)習(xí),而是通過理論指導(dǎo)實踐,從而為科學(xué)的進步和人才綜合水平的提高提供可能。
    2.1數(shù)學(xué)建模對數(shù)學(xué)學(xué)科和其他學(xué)科學(xué)生的巨大影響力學(xué)習(xí)數(shù)學(xué)建模,能夠使一個單獨的數(shù)學(xué)家變成經(jīng)濟學(xué)家,物理學(xué)家還有金融學(xué)家,甚至是藝術(shù)家,只要正握數(shù)學(xué)建模就能指導(dǎo)學(xué)生通過掌握數(shù)學(xué)建模的思維和方法向其他領(lǐng)域?qū)W習(xí)和進步。數(shù)學(xué)建模成為連接數(shù)學(xué)和其他領(lǐng)域的紐帶,是當(dāng)今數(shù)學(xué)科學(xué)在其他領(lǐng)導(dǎo)應(yīng)用的橋梁,是數(shù)學(xué)技術(shù)轉(zhuǎn)化為其他技術(shù)的途徑,數(shù)學(xué)建模在學(xué)生中越來越受到關(guān)注和歡迎,越來越多的學(xué)生開始學(xué)習(xí)數(shù)學(xué)建模,尤其是數(shù)學(xué)界和工程界的學(xué)生,這成為當(dāng)今學(xué)生成為現(xiàn)代科技工作者必須掌握的只是能力之一。
    2.2數(shù)學(xué)建模對學(xué)生綜合能力的提高數(shù)學(xué)建模是大學(xué)數(shù)學(xué)教師運用數(shù)學(xué)科學(xué)去分析和解決實際問題,在數(shù)學(xué)建模學(xué)習(xí)的過程中,大學(xué)生的數(shù)學(xué)能力得到提高,其分析問題、解決問題的能力得到提高,這對大學(xué)生畢業(yè)走向社會具有著重大意義。通過數(shù)學(xué)建模的學(xué)習(xí)和應(yīng)用,激發(fā)大學(xué)生學(xué)習(xí)數(shù)學(xué)和應(yīng)用數(shù)學(xué)的能力,運用數(shù)學(xué)的思維和方法,利用現(xiàn)代計算機科學(xué),來解決數(shù)學(xué)及其他領(lǐng)域的問題。
    數(shù)學(xué)建模引入大學(xué)數(shù)學(xué)教學(xué),這是時代的進步,是時代對當(dāng)代大學(xué)教師提出的新要求,尤其是大學(xué)數(shù)學(xué)教師,其不再停留在以往的單純的數(shù)學(xué)知識講授方向,而是將數(shù)學(xué)科學(xué)作為基礎(chǔ),引導(dǎo)當(dāng)代大學(xué)生發(fā)散思維,發(fā)揮主觀能動性,從而學(xué)習(xí)數(shù)學(xué)科學(xué),并運用數(shù)學(xué)科學(xué)解決現(xiàn)實問題。在這個過程中大學(xué)教師的專業(yè)知識得到提高,其創(chuàng)新精神也得到了極大的豐富。大學(xué)數(shù)學(xué)教師不止完成數(shù)學(xué)教學(xué),更重要的是培養(yǎng)了高科技的人才,這對大學(xué)數(shù)學(xué)教師的社會地位也有了相應(yīng)的改變,在尊重人才,尊重科學(xué)的氛圍中,大學(xué)數(shù)學(xué)教師及其他學(xué)科的教師得到了鼓舞,得到了進步,得到了認(rèn)可。數(shù)學(xué)建模越來越重要,關(guān)于數(shù)學(xué)建模的各種國內(nèi)國際大賽頻頻舉辦,這對大學(xué)數(shù)學(xué)教師在知識,體力和創(chuàng)新性上都提出新的要求,為了更好的參與數(shù)學(xué)建模比賽,大學(xué)數(shù)學(xué)教師投入更多的時間和經(jīng)歷在學(xué)生教育和數(shù)學(xué)建模中,他們成為真正的臺前和幕后的指揮者。
    隨著現(xiàn)代大學(xué)學(xué)科的豐富,尤其是計算機科學(xué)的廣泛應(yīng)用,大學(xué)數(shù)學(xué)教學(xué)的跨時代發(fā)展,數(shù)學(xué)建模成為各個高校數(shù)學(xué)教學(xué)的重點內(nèi)容,數(shù)學(xué)建模教學(xué)吸納數(shù)學(xué)家,計算機學(xué)家等多個學(xué)科專家的意見,從而為培養(yǎng)出綜合行的高科技人才做好充分的準(zhǔn)備??梢哉f數(shù)學(xué)建模教學(xué)是當(dāng)今大學(xué)數(shù)學(xué)教學(xué)的主旋律,是數(shù)學(xué)科學(xué)和其他科學(xué)進步發(fā)展的方向和原動力。
    [1]李進華.教育教學(xué)改革與教育創(chuàng)新探索.安徽:安徽大學(xué)出版社,20xx.8.
    [2]于駿.現(xiàn)代數(shù)學(xué)思想方法.山東:石油大學(xué)出版社,1997.
    數(shù)學(xué)建模論文篇九
    摘要:數(shù)學(xué)建模課堂中學(xué)生的自主探究、合作學(xué)習(xí)與教師的科學(xué)引導(dǎo)并不矛盾而是相輔相成的。只有在教師科學(xué)、適時、適當(dāng)?shù)匾龑?dǎo)下才能更好地突出學(xué)生的主體地位,從而打造出自主探究、合作學(xué)習(xí)、愉悅發(fā)展的高效數(shù)學(xué)建模課堂。
    關(guān)鍵詞:數(shù)學(xué)建模;教師
    一、新課的引入需要發(fā)揮教師的作用
    教師在數(shù)學(xué)建模課堂上的引導(dǎo)作用首先體現(xiàn)在教師對新課的引入上。教師一段精彩的導(dǎo)入會點燃學(xué)生學(xué)習(xí)的熱情、激發(fā)學(xué)生的學(xué)習(xí)興趣、喚起學(xué)生的好奇心,能把學(xué)生的注意力迅速集中到要學(xué)的知識上來。這對提高教學(xué)質(zhì)量、提高學(xué)生的學(xué)習(xí)效果起著不可估量的作用。同時,新課前的導(dǎo)入環(huán)節(jié)是對學(xué)生進行情感教育的最佳時刻。學(xué)生只有在教師的引導(dǎo)下才能夠體會到數(shù)學(xué)建模的價值、增強學(xué)好數(shù)學(xué)建模的信心。俗話說:“好的開始是成功的一半?!睌?shù)學(xué)建模課堂也是這樣。因此,在新課引入時要充分發(fā)揮教師的作用。
    二、在教學(xué)任務(wù)的設(shè)計上需要發(fā)揮教師的作用
    數(shù)學(xué)建模課堂一般應(yīng)采用任務(wù)型教學(xué)模式,是讓學(xué)生通過自主探究、合作學(xué)習(xí)、交流展示的方式完成一系列學(xué)習(xí)任務(wù)來達到特定的教學(xué)目標(biāo)和學(xué)習(xí)目標(biāo)。學(xué)生在課堂中的主體作用能否得到有效發(fā)揮取決于教師對問題設(shè)計質(zhì)量的高低。教師應(yīng)通過設(shè)計一系列高質(zhì)量的問題把復(fù)雜的數(shù)學(xué)建模問題分解成若干簡單問題來引導(dǎo)學(xué)生更好地發(fā)揮其主動性。學(xué)生也只有在這些問題的正確引導(dǎo)下才能突破難點并向著學(xué)習(xí)目標(biāo)努力,有效防止學(xué)生思考、探究、交流的內(nèi)容偏離學(xué)習(xí)目標(biāo)等現(xiàn)象的出現(xiàn)。這些任務(wù)的制訂需要充分發(fā)揮教師的作用。
    三、在新舊知識的聯(lián)系點上需要發(fā)揮教師的作用
    建構(gòu)主義強調(diào)新知識是在學(xué)生已有知識的基礎(chǔ)上通過學(xué)生自身有意義的建構(gòu)獲得的。筆者認(rèn)為,學(xué)生自主建構(gòu)知識應(yīng)在教師的科學(xué)引導(dǎo)下進行。尤其是對于數(shù)學(xué)建模這樣高難度的知識更是這樣。失去了教師的科學(xué)引導(dǎo),學(xué)生易產(chǎn)生疲倦感,久而久之會喪失學(xué)習(xí)數(shù)學(xué)建模的興趣和信心。因此,在新舊知識聯(lián)系點上應(yīng)發(fā)揮教師的作用。教師應(yīng)在準(zhǔn)確掌握教學(xué)目標(biāo)、難點的基礎(chǔ)上,充分考慮學(xué)生的認(rèn)知能力、習(xí)慣、思維方式,通過有針對性的具體問題喚起學(xué)生對舊知識的回憶,再通過啟發(fā)性問題引導(dǎo)學(xué)生去發(fā)現(xiàn)新知識,從而實現(xiàn)溫故知新的目的。在教師引領(lǐng)下學(xué)生自主建構(gòu)知識可以使學(xué)生少走彎路,從而使學(xué)生更加高效地自主探究、掌握新知識。
    四、在教學(xué)重點、難點上需要教師的引導(dǎo)
    教學(xué)的重點、難點是每一節(jié)課的核心和主線,只有準(zhǔn)確把握了重點、突破了難點才能更好地掌握本節(jié)課的內(nèi)容。在強調(diào)學(xué)生自主探究、小組合作學(xué)習(xí)的課堂教學(xué)模式中,數(shù)學(xué)建模教材的重點、難點學(xué)生往往把握不準(zhǔn)、難以突破。這就需要教師科學(xué)引導(dǎo)學(xué)生主動去發(fā)現(xiàn)重點、突破難點。教師引導(dǎo)學(xué)生發(fā)現(xiàn)重點、突破難點并不是讓教師直接告訴學(xué)生本節(jié)課的重點是什么、怎樣突破難點,而是通過具體問題的引導(dǎo)讓學(xué)生自己找到重點、并通過學(xué)生自己的思考、討論解決疑難問題。學(xué)生在教師的引導(dǎo)下通過自己的努力、討論解決了疑難后,學(xué)生會非常興奮,從而會越來越喜歡數(shù)學(xué)建模課。相反,在沒有教師引導(dǎo)的數(shù)學(xué)建模課堂中,學(xué)生經(jīng)常被困難嚇倒,從而對數(shù)學(xué)建模課產(chǎn)生畏懼感。由此可見,教師對學(xué)生的科學(xué)引導(dǎo)是學(xué)生學(xué)好數(shù)學(xué)建模必不可少的環(huán)節(jié)。在以學(xué)生為本、注重學(xué)生全面發(fā)展、提倡課堂中突出學(xué)生主體地位的背景下,教師的引導(dǎo)仍是數(shù)學(xué)建模課堂中不可缺失的要素。數(shù)學(xué)建模課堂中學(xué)生的自主探究、合作學(xué)習(xí)與教師的科學(xué)引導(dǎo)并不矛盾而是相輔相成的。只有在教師科學(xué)、適時、適當(dāng)?shù)匾龑?dǎo)下才能更好地突出學(xué)生的主體地位,從而打造出自主探究、合作學(xué)習(xí)、愉悅發(fā)展的高效數(shù)學(xué)建模課堂。
    數(shù)學(xué)建模論文篇十
    使學(xué)生的綜合應(yīng)用能力、實踐創(chuàng)新能力和綜合應(yīng)用素質(zhì)等多方面均能得到提升和發(fā)展。
    對于醫(yī)學(xué)專業(yè)的學(xué)生來說,在校所學(xué)的數(shù)學(xué)基礎(chǔ)理論課程比較有限,并且學(xué)生對純粹的數(shù)學(xué)知識與復(fù)雜的理論推導(dǎo)已經(jīng)極為厭倦,如果數(shù)學(xué)建模還是以傳統(tǒng)的“灌輸式”和教師“主導(dǎo)型”為主、簡單的應(yīng)用案例為主要教學(xué)內(nèi)容的話,其結(jié)果勢必會使學(xué)生有一種再講數(shù)學(xué)課和做應(yīng)用題的感覺,既不能很好地激發(fā)學(xué)生的學(xué)習(xí)興趣,也不能體現(xiàn)數(shù)學(xué)建模的思想方法和本質(zhì)特色。
    因此,如何使學(xué)生擺脫這種尷尬的現(xiàn)狀已成為我們教學(xué)的一大難點。針對這種情況,在教學(xué)模式上,我們大膽嘗試研究型教學(xué)模式,即采用“從實踐中來,到實踐中去”的教學(xué)理念。一方面,從最現(xiàn)實、最熱門的醫(yī)學(xué)話題出發(fā),從學(xué)生最感興趣的.問題入手,激發(fā)學(xué)生的學(xué)習(xí)興趣和進一步學(xué)習(xí)的主動性,使他們從一開始就能進入到學(xué)習(xí)的角色中去;另一方面,通過開展多種方式的實踐教學(xué)活動,使學(xué)生在實踐中掌握數(shù)學(xué)建模的常用方法和基本技能,忽略繁瑣的數(shù)學(xué)推導(dǎo)過程,讓學(xué)生體會發(fā)現(xiàn)問題和思考問題的過程,培養(yǎng)學(xué)生解決問題的創(chuàng)新能力。
    近些年來,我們開設(shè)的醫(yī)藥數(shù)學(xué)建模課受到了學(xué)生的一致好評,其關(guān)鍵之處在于我們一改傳統(tǒng)的教學(xué)模式,通過組織數(shù)學(xué)建模興趣研討班,讓每位同學(xué)都能充分地參與到研究中去并且使每位學(xué)生都有發(fā)言的機會。這些舉措旨在進一步激發(fā)學(xué)生的創(chuàng)新意識,提高學(xué)生的數(shù)學(xué)建模實踐能力。研討班面向全校各類醫(yī)學(xué)專業(yè)的學(xué)生,并以三人為單位,劃分成若干個組,通過專題研討的形式開展活動。實踐證明:通過這種研討過程,學(xué)生不僅對所學(xué)的醫(yī)學(xué)知識有了更深刻的理解與認(rèn)識,在文獻資料查閱、計算機編程、語言表達能力等諸多方面也都有了顯著的提高。通過這個過程的學(xué)習(xí),為學(xué)生今后從事醫(yī)學(xué)科研工作打下了良好的基礎(chǔ)。
    為了有效的培養(yǎng)學(xué)生綜合應(yīng)用能力和深層次學(xué)習(xí)的習(xí)慣與意識,我們在教學(xué)方法上一改往日的“講透,講懂”的方法,忽略純理論的繁瑣推導(dǎo),突出知識的應(yīng)用思想和應(yīng)用意識,讓學(xué)生帶著問題上課,嘗試在解決問題中與教師進行交流,下課帶著問題回去。
    在課堂教學(xué)中,重點講解發(fā)現(xiàn)問題和解決問題的方法與技巧。通過課前作業(yè),引導(dǎo)學(xué)生自我發(fā)現(xiàn)問題;通過課堂講解和研討,引導(dǎo)學(xué)生解決問題;通過課后作業(yè),總結(jié)和鞏固所學(xué)知識,學(xué)習(xí)應(yīng)用與拓展知識。這種完全以學(xué)生為主,教師為輔的做法,有利于培養(yǎng)學(xué)生樹立勇于探索求知的信心和探索新知識的能力與意識,提高學(xué)生的創(chuàng)新能力和敏銳的洞察力及想象力,從而提升學(xué)生的綜合應(yīng)用素質(zhì)。
    在現(xiàn)實生活中的實際問題是比較復(fù)雜的,往往單一的方法是難以解決的,通常是需要多種方法的綜合應(yīng)用方能解決。
    因此,以實際問題驅(qū)動的教學(xué)模式,主要是引導(dǎo)學(xué)生如何將復(fù)雜的實際問題分解為一系列簡單的小問題,在解決每一個小問題的過程中,讓學(xué)生學(xué)習(xí)并掌握相關(guān)的數(shù)學(xué)知識與方法。這種在應(yīng)用中學(xué)習(xí)的教學(xué)方法,在很大程度上解決了學(xué)生普遍存在的“學(xué)數(shù)學(xué)有什么用、學(xué)了數(shù)學(xué)不知怎么用”的困惑。
    在整個教學(xué)過程中,貫穿以學(xué)生為主體,通過案例分析引導(dǎo)學(xué)生的思維方法,針對一個案例的解決過程和方法,要求實現(xiàn)舉一反三,促使學(xué)生對所掌握的知識進行重組再現(xiàn)和優(yōu)化構(gòu)建,讓學(xué)生在學(xué)習(xí)和問題的解決中學(xué)會不斷地總結(jié)與歸納,用成功的方法再去演繹解決新的問題,通過不斷地歸納演繹、對比分析、總結(jié)經(jīng)驗、彌補不足,進一步學(xué)習(xí)相關(guān)知識和方法,再進行實踐,從而不斷增強自身的綜合應(yīng)用能力和素質(zhì)。
    隨著醫(yī)學(xué)院校教育理念的轉(zhuǎn)變以及教育體制改革的深入,對培養(yǎng)適應(yīng)科學(xué)技術(shù)迅速發(fā)展的創(chuàng)新型醫(yī)學(xué)人才提出了更高的要求。如何培養(yǎng)出具有創(chuàng)新能力、綜合素質(zhì)高的專業(yè)人才已成為亟待解決的問題之一。本文探討了醫(yī)藥數(shù)學(xué)建模課程的開設(shè)對培養(yǎng)大學(xué)生實踐創(chuàng)新能力的幾點做法。教學(xué)實踐證明:數(shù)學(xué)建模課充分鍛煉了學(xué)生的各項能力,是提高醫(yī)學(xué)專業(yè)學(xué)生綜合應(yīng)用素質(zhì)行之有效的方法。
    數(shù)學(xué)建模論文篇十一
    摘要:隨著現(xiàn)代社會的發(fā)展,數(shù)學(xué)的廣泛用途已經(jīng)無需質(zhì)疑,他深入到我們生活的方方面面?,F(xiàn)階段,數(shù)學(xué)建模已經(jīng)成為應(yīng)用數(shù)學(xué)知識解決日常問題的一個重要手段。本文通過簡述數(shù)學(xué)建模的方法與過程,以及應(yīng)用數(shù)學(xué)建模解決實際經(jīng)濟問題的應(yīng)用,展現(xiàn)的了數(shù)學(xué)學(xué)習(xí)的重要意義,以及數(shù)學(xué)在經(jīng)濟問題解決中的重要作用。
    關(guān)鍵詞:數(shù)學(xué);數(shù)學(xué)建模;經(jīng)濟;應(yīng)用
    經(jīng)濟現(xiàn)象具有多變性,隨著經(jīng)濟社會的發(fā)展,國際間貿(mào)易往來的日趨緊密,日常經(jīng)濟形勢受到的影響因素越來越復(fù)雜多變。而日常經(jīng)濟生活中所遇到的經(jīng)濟現(xiàn)象同樣存在著諸多的變化的影響因素。如何應(yīng)對這些難以把控的變量,做好風(fēng)險的預(yù)估、成本的核算、進行最大成本的規(guī)劃,所有這些都可以借助數(shù)學(xué)知識、應(yīng)用數(shù)學(xué)建模為工具進行較為理性的計算,為經(jīng)濟決策、企業(yè)規(guī)劃提供重要的幫助。
    一、數(shù)學(xué)建模
    數(shù)學(xué)建模,其實就是建立數(shù)學(xué)模型的簡稱,實際上數(shù)學(xué)建模可以稱之為解決問題的一種思考方法,借助數(shù)學(xué)工具應(yīng)用已知的定理定義進行合理的運算,推導(dǎo)出一種理性的結(jié)果的過程。數(shù)學(xué)建模是可以聯(lián)系數(shù)學(xué)和外部世界的一個中介和橋梁,在工業(yè)設(shè)計、經(jīng)濟領(lǐng)域、工程建設(shè)等各個方面,運用數(shù)學(xué)的語言和方法進行問題的求解和推導(dǎo),實際上,都是一種數(shù)學(xué)建模的過程。數(shù)學(xué)建模的主要過程可以總結(jié)為如下的框圖形式:實際上,數(shù)學(xué)模型的最終建立是一個反復(fù)驗證、修改、完善的動態(tài)過程,很少能夠通過一次過程就建立起完美適合實際問題的數(shù)學(xué)模型。通過上述過程的多次循環(huán)執(zhí)行:1.模型準(zhǔn)備:分析問題,明確建模的目的,統(tǒng)計各種信息數(shù)據(jù);2.模型假設(shè):根據(jù)建模目的,結(jié)合實際對象的特性,對復(fù)雜問題進行簡化,提取主要因素,提煉精確的數(shù)學(xué)語言;3.模型建立:根據(jù)提煉的主要因素,選擇適當(dāng)?shù)臄?shù)學(xué)工具,建立各個量(變量、常量)間的數(shù)學(xué)關(guān)系,化實際問題為數(shù)學(xué)語言;4.模型求解:對上述數(shù)學(xué)關(guān)系進行求解(包括解方程、圖形分析、邏輯運算等);5.模型分析:將求解結(jié)果與實際問題結(jié)合,綜合分析,找到模型的缺陷和不足,進行數(shù)學(xué)上的優(yōu)化,建立穩(wěn)定模型;6.模型檢驗:將模型得到的結(jié)果與實際情況相驗證,檢驗?zāi)P偷暮侠硇院瓦m用性。
    二、經(jīng)濟問題數(shù)學(xué)模型的建立
    經(jīng)濟類問題因為其特有的特點,可以按照變量的性質(zhì)分為兩類:概率型和確定型。概率型應(yīng)用于處理具有隨機性情況的模型,可以解決類似風(fēng)險評估、最優(yōu)產(chǎn)量計算、庫存平衡等問題;確定型則可以基于一定的條件與假設(shè),精確的對一種特定情況的結(jié)果做出判斷,如成本核算、損失評估等。對經(jīng)濟問題的建模計算實際上是一個從經(jīng)濟世界進入數(shù)學(xué)世界再回到經(jīng)濟世界的過程。建立經(jīng)濟數(shù)學(xué)模型,需要首先對實際經(jīng)濟問題和情況有一個較為深入的認(rèn)識,然后通過細(xì)致的觀察梳理,抽出最為本質(zhì)的特征性的東西。將原始的復(fù)雜的經(jīng)濟問題簡化提煉為一個較為理想的自然模型,然后基于這個原始模型應(yīng)用數(shù)學(xué)知識建立完整的數(shù)學(xué)經(jīng)濟模型。
    三、建模舉例
    四、結(jié)語
    綜上所述,我們可以看到,數(shù)學(xué)建模在經(jīng)濟中的應(yīng)用可以非常廣泛,對很多的決策和工作都可以提供參考和指導(dǎo),如提高利潤、規(guī)避風(fēng)險、降低成本、節(jié)省開支等各個方面。上文只提供了一個簡單的例子,和初步的介紹,其深入的理念和概念更加值得我們?nèi)ヅΦ膶W(xué)習(xí)和思考。
    數(shù)學(xué)建模論文篇十二
    培養(yǎng)應(yīng)用型人才是我國高等教育從精英教育向大眾教育發(fā)展的必然產(chǎn)物,也是知識經(jīng)濟飛速發(fā)展和市場對人才多元化需求的必然要求。隨著科學(xué)技術(shù)的不斷發(fā)展,各學(xué)科各領(lǐng)域?qū)嶋H問題的研究日益精確化與定量化,數(shù)學(xué)在科學(xué)研究與工程技術(shù)中的作用不斷增強,其應(yīng)用的范圍幾乎覆蓋了所有學(xué)科分支,滲透到社會生活中的各個領(lǐng)域。前蘇聯(lián)數(shù)學(xué)家亞歷山大洛夫曾說過,“數(shù)學(xué)在其它科學(xué)中,在技術(shù)中,在全部生活實踐中都有廣泛的應(yīng)用”。1993年,王梓坤院士發(fā)表的著名報告《今日數(shù)學(xué)及其應(yīng)用》中也深刻指出:“現(xiàn)代世界國家間的競爭本質(zhì)上是高技術(shù)的競爭,而高技術(shù)本質(zhì)上是一種數(shù)學(xué)技術(shù)?!睌?shù)學(xué)是一門技術(shù)已經(jīng)成為人們的共識。數(shù)學(xué)技術(shù)離不開數(shù)學(xué)建模,數(shù)學(xué)建模是把數(shù)學(xué)作為工具,并應(yīng)用它解決實際問題的一種活動,它是一個跨學(xué)科、跨專業(yè)、綜合性和應(yīng)用性都非常強的過程,是數(shù)學(xué)應(yīng)用的必由之路,是聯(lián)系數(shù)學(xué)與實際問題的橋梁,是數(shù)學(xué)在各個領(lǐng)域廣泛應(yīng)用的媒介。因此,數(shù)學(xué)建模的過程是一個全而培養(yǎng)學(xué)生綜合素質(zhì)、提高學(xué)生各種能力的過程,數(shù)學(xué)建模是培養(yǎng)生產(chǎn)一線應(yīng)用型人才的一條重要途徑。
    應(yīng)用型人才是將專業(yè)知識和專業(yè)技能應(yīng)用于社會實踐的專門人才是熟練掌握社會生產(chǎn)或社會活動一線的基礎(chǔ)知識和基本技能,主要從事一線生產(chǎn)的技術(shù)或?qū)iT人才社會對應(yīng)用型人才的基本要求是具有基礎(chǔ)扎實,知識而寬,應(yīng)用能力強,素質(zhì)高,有較強的創(chuàng)新精神和團隊合作精神。他們的突出特點是既具有寬廣的知識而和深厚的基礎(chǔ)理論,又能將所學(xué)知識應(yīng)用于本行業(yè)相關(guān)技術(shù)領(lǐng)域,適應(yīng)產(chǎn)業(yè)發(fā)展對應(yīng)用型人才市場需求的不斷變化,還有接受繼續(xù)教育的基礎(chǔ)條件和進一步獲取新知識的基本能力和擴展與職業(yè)相關(guān)的學(xué)科知識能力。
    隨著高等教育的不斷擴招,高等教育的大眾化趨勢已越來越明顯,在這種背景下,傳統(tǒng)的“研究型”、“學(xué)術(shù)型”人才培養(yǎng)模式受到了嚴(yán)峻的挑戰(zhàn),因此,一些發(fā)達國家率先提出了“發(fā)展應(yīng)用型大學(xué)”,“培養(yǎng)應(yīng)用型人才”的口號。德國早在20世紀(jì)70年代就成立了應(yīng)用科技大學(xué),其應(yīng)用型人才的培養(yǎng)特色鮮明,深受歡迎。美國的工程教育,英國的技術(shù)學(xué)院,日本的短期大學(xué)都以培養(yǎng)應(yīng)用型人才而著稱。近年來,我國高等院校對應(yīng)用型人才的培養(yǎng)取得了一定的進展,但仍然存在認(rèn)識上的不足,培養(yǎng)方案和措施仍有許多不盡如人意的地方,應(yīng)用型人才的培養(yǎng)模式還有待于進一步探索。通過多年的實踐和探索,根據(jù)應(yīng)用型人才的特點和社會日益數(shù)字化,對應(yīng)用型人才的要求以及數(shù)學(xué)在各行各業(yè)中的廣泛應(yīng)用、數(shù)學(xué)建模在應(yīng)用型人才培養(yǎng)中具有不可替代的重要作用。
    數(shù)學(xué)建模就是用數(shù)學(xué)語言、方法近似地刻畫要解決的實際問題,對于已建立的模型采用推理、證明、數(shù)值計算等技術(shù)手段及相應(yīng)的數(shù)學(xué)軟件求解,并利用所得的結(jié)果擬合實際問題。數(shù)學(xué)建模在應(yīng)用型人才培養(yǎng)中的作用主要體現(xiàn)在以下幾個方面:
    由于實際問題的'復(fù)雜性,在數(shù)學(xué)建模過程中要涉及到大量的數(shù)據(jù)收集和對數(shù)據(jù)的分析與處理,一個完整的建模過程一般要經(jīng)歷模型的假設(shè)、模型的建立與求解、算法的設(shè)計和計算機實現(xiàn)、對結(jié)果的分析與檢驗并將所得的結(jié)果模擬實際問題等幾個階段。這些過程只靠個人的力量在有限時間內(nèi)是很難完成的,這就注定了數(shù)學(xué)建模是一個團隊的集體行為,需要有師生之間、學(xué)生之間以及學(xué)生與社會之間的交流與合作。因此數(shù)學(xué)建模有利于提高學(xué)生的團隊合作精神,而團隊合作精神又是社會對應(yīng)用型人才的基本要求。
    數(shù)學(xué)建模所面臨的數(shù)據(jù)是雜亂無章的,這就要求學(xué)生對這些數(shù)據(jù)進行去粗取精,去偽存真,歸納、提煉、整理、加工和總結(jié),還需要對一些已知條件進行符號化和量化,然后從中抽象出恰當(dāng)?shù)臄?shù)學(xué)關(guān)系,從而組建一定的數(shù)學(xué)模型,再用所學(xué)的數(shù)學(xué)理論和方法去求解數(shù)學(xué)模型。在對實際問題中的數(shù)據(jù)進行加工和整理過程中,為使問題簡化,有些因素是可以忽略的,但有些因素不能忽略,究竟哪些因素可以忽略、哪些因素不能忽略并沒有一定的范式,這要根據(jù)建模者對實際問題的理解、研究問題的目的以及數(shù)學(xué)背景來完成這個過程,應(yīng)該說這是一個創(chuàng)造性的過程。另外,數(shù)學(xué)模型是對實際問題的近似刻畫,為了使建立的數(shù)學(xué)模型盡可能完美地表達實際問題,又使模型易于求解,需要對模型進行不斷的改進和不斷的完善,這就要求學(xué)生不斷對問題進行深入的了解,深入到知識的更深層面,這樣又會產(chǎn)生新的疑問,這個過程多次循環(huán)們復(fù),學(xué)生的創(chuàng)新能力將不斷得到加強。創(chuàng)新能力也是社會對應(yīng)用型人才的基本要求。
    一個完整的數(shù)學(xué)建模過程是綜合運用知識和能力,解決實際問題的過程。這不僅需要學(xué)生有較好的數(shù)學(xué)基礎(chǔ)和嚴(yán)密的邏輯推理能力,還要求學(xué)生對問題的實際背景有一定的了解,要求學(xué)生有廣博的知識和深厚的專業(yè)基礎(chǔ),并能對這些知識進行融會貫通。數(shù)學(xué)建模面臨的數(shù)據(jù)}i-.}i是龐大而復(fù)雜的,對數(shù)據(jù)的處理過程是一個分析與綜合,抽象與概括,比較與類比,系統(tǒng)化與具體化的過程。在這個過程中,學(xué)生的應(yīng)變能力和多角度分析,多方位思考能力不斷得到提高,綜合素質(zhì)不斷得到加強。綜合素質(zhì)和能力是應(yīng)用型人才的基本特征和社會對應(yīng)用型人才的起碼要求。
    從實際問題中抽象出來的數(shù)學(xué)模型一般很復(fù)雜,因此模型的求解一般很困難,甚至無法求出模型的解析解,即使能求出模型的解析解,由于其復(fù)雜性而無多大的應(yīng)用價值。所以數(shù)學(xué)模型的求解通常需要編寫算法,運用某些數(shù)學(xué)軟件利用計算機求其數(shù)值解,這就要求學(xué)生有較強的數(shù)學(xué)軟件應(yīng)用能力和對計算機的實際操作能力。在操作的過程中,學(xué)生的動手能力和實踐能力自然而然得到提高。另外在數(shù)學(xué)建模中,需要進行調(diào)查研究,需要對有關(guān)的數(shù)據(jù)進行廣泛的采集和補充,這就是應(yīng)用型人才培養(yǎng)中所強調(diào)的實踐性。
    數(shù)學(xué)建模本身就是綜合運用知識,解決實際問題的過程。數(shù)學(xué)建模中的很多典型案例,如“最優(yōu)捕魚策略”,“投資的收入和風(fēng)險”,“車燈線光源的優(yōu)化設(shè)計”等就較好地突現(xiàn)了知識的應(yīng)用性。數(shù)學(xué)建模是數(shù)學(xué)應(yīng)用的必由之路,是聯(lián)系數(shù)學(xué)與實際問題的橋梁。一方面數(shù)學(xué)建模需要用數(shù)學(xué)語言、方法近似地刻畫要解決的實際問題,另一方面數(shù)學(xué)建模需要利用所得的結(jié)果擬合實際問題,所有這些都與應(yīng)用型人才的突出特點和社會對應(yīng)用型人才的要求是一致的。
    數(shù)學(xué)建模需要學(xué)生親自參與問題的研究與探索,數(shù)據(jù)的收集和補充需要學(xué)生的積極參與,數(shù)據(jù)的處理和模型的建立需要學(xué)生的主動參與,模型的求解需要學(xué)生獨立完成。數(shù)學(xué)建模一般需要綜合運用多方面的知識,需要了解相關(guān)問題的背景材料,需要對相關(guān)的數(shù)據(jù)進行合理的取舍和有效的篩選,有些知識和相關(guān)的資料需要學(xué)生自己去查詢,所有這些都為學(xué)生的自主學(xué)習(xí)提供了一個良好的“下臺。另外,數(shù)學(xué)建模需要用自己的語言描述問題的解決過程,需要廣泛的交流與合作,還需要進行論文的寫作等等,這些都對學(xué)生語言表達能力的提高具有重要的作用。應(yīng)用型人才的一個突出特點就是具有接受繼續(xù)教育的基礎(chǔ)條件和進一步獲取新知識的基本能力和擴展與職業(yè)相關(guān)的學(xué)科知識能力,而自學(xué)能力和語言表達能力為進一步獲取新知識等能力提供了良好的基礎(chǔ)。
    應(yīng)該說,數(shù)學(xué)建模的作用是多方面的,通過數(shù)學(xué)建模的訓(xùn)練,學(xué)生獲得了參與研究探索的體驗,培養(yǎng)了收集、分析和利用信息的能力,學(xué)會了分享與合作,鍛煉了學(xué)生的意志力、洞察力、想象力、自學(xué)能力、語言的翻譯和表達能力以及綜合應(yīng)用專業(yè)知識解決實際問題的能力與分析問題、解決問題的能力,所有這一切都是應(yīng)用型人才培養(yǎng)所要達到的目標(biāo),也是與應(yīng)用型人才培養(yǎng)模式的四個基本點是一致的。因此數(shù)學(xué)建模能將應(yīng)用型人才的突出特征和社會對應(yīng)用型人才的要求體現(xiàn)得淋漓盡致,它在應(yīng)用型人才的培養(yǎng)中具有不可替代的重要作用。
    1.馬克思有一句名言,“一門科學(xué)只有成功地應(yīng)用了數(shù)學(xué)時,才算真正達到了完善的地步”。不論是自然科學(xué)還是社會科學(xué)都需要數(shù)學(xué),都蘊含數(shù)學(xué)。一門科學(xué)要成功地應(yīng)用數(shù)學(xué),必須對這門學(xué)科中的問題建立數(shù)學(xué)模型。因此,建議高等院校的各個專業(yè)都要不同程度地開設(shè)數(shù)學(xué)建模課程,并根據(jù)專業(yè)的不同要求選擇合適的數(shù)學(xué)建模內(nèi)容,真正做到“人人學(xué)有用的數(shù)學(xué),人人做有用的數(shù)學(xué),人人用有用的數(shù)學(xué)”。
    2.數(shù)學(xué)建模課程應(yīng)增加實訓(xùn)內(nèi)容,數(shù)學(xué)建模的學(xué)習(xí)應(yīng)以實訓(xùn)內(nèi)容為主。教師應(yīng)根據(jù)學(xué)生的具體情況,女排布置具有綜合性、開放性、靈活性和趣味性的實訓(xùn)題目,讓學(xué)生自己進行調(diào)查研究,自己收集數(shù)據(jù)、分析數(shù)據(jù)和處理數(shù)據(jù),模型的建立和求解要以學(xué)生為主體,并以論文的形式提交給教師,教師提供實時指導(dǎo)和幫助,對建模的結(jié)果進行有的放矢的點評,并將實訓(xùn)內(nèi)容作為學(xué)生期末考評的主要內(nèi)容和重要依據(jù)。
    3.舉辦多種形式的數(shù)學(xué)建模競賽,豐富數(shù)學(xué)建模的教學(xué)內(nèi)容和教學(xué)方式,引進案例教學(xué)和專題講座,通過對典型案例的深入剖析,激發(fā)學(xué)生的學(xué)習(xí)興趣和積極性,培養(yǎng)學(xué)生的數(shù)學(xué)建模思想和堅忍不拔的毅力,聘請專家對一些典型問題進行專題講座。
    數(shù)學(xué)建模論文篇十三
    隨著我國高等教育的發(fā)展,高校招生規(guī)模越來越大,而生源質(zhì)量較低,特別是獨立學(xué)院院校。就我校而言,絕大多數(shù)專業(yè)都開設(shè)了數(shù)學(xué)類課程。但在教學(xué)中,普遍認(rèn)為理論性太強,與實際脫節(jié)嚴(yán)重,不能引起學(xué)生的學(xué)習(xí)興趣。并且,傳統(tǒng)教學(xué)忽視了學(xué)生用數(shù)學(xué)解決實際問題的能力,所以,進行數(shù)學(xué)教學(xué)改革勢在必行。數(shù)學(xué)建??膳囵B(yǎng)學(xué)生利用數(shù)學(xué)知識解決實際問題的能力,通過數(shù)模方法對實際問題進行巧妙處理,讓學(xué)生體會到數(shù)學(xué)不僅能傳播理論知識和求解一些數(shù)學(xué)問題,還可將其應(yīng)用到實際問題中,讓學(xué)生看到一些實際模型的來龍去脈,提高學(xué)生的學(xué)習(xí)積極性。數(shù)學(xué)建模是培養(yǎng)學(xué)生綜合科學(xué)素質(zhì)和創(chuàng)新能力的一個極好載體,而且能充分考驗學(xué)生的洞察能力、創(chuàng)新能力、聯(lián)想能力、使用當(dāng)代科技最新成果的能力等。學(xué)生們同舟共濟的團隊合作精神和協(xié)調(diào)組織能力,以及誠信意識和自律精神的塑造,都能得到很好的培養(yǎng)。技能技術(shù)的掌握和團隊合作精神對于獨立學(xué)院學(xué)生將來進入社會十分重要,這也是衡量獨立學(xué)院辦學(xué)成功與否的一個方面。因此,獨立學(xué)院的人才培養(yǎng)目標(biāo)定位,既要達到本科生應(yīng)具備的理論基礎(chǔ),又要有相對突出的專業(yè)技能,應(yīng)培養(yǎng)“應(yīng)用型本科”人才。因而,獨立學(xué)院的數(shù)學(xué)課堂上應(yīng)該多方面滲透數(shù)學(xué)模型的思想。
    (一)人才培養(yǎng)創(chuàng)新的需要
    根據(jù)獨立學(xué)院人才培養(yǎng)目標(biāo)和實際情況,有針對性的加大基礎(chǔ)課和實踐環(huán)節(jié)教學(xué)的'比重,側(cè)重于實踐能力的培養(yǎng),在專業(yè)課程體系中適當(dāng)增加實驗、實踐教學(xué)內(nèi)容,加強與社會實體的聯(lián)系。力求培養(yǎng)出具有實際操作能力的高素質(zhì)大學(xué)生。數(shù)學(xué)建模是將一個實際問題,對其作出一些必要的簡化與假設(shè),將其轉(zhuǎn)化成一個數(shù)學(xué)問題,借助數(shù)學(xué)工具和數(shù)學(xué)方法精確或近似地解決該問題,并用數(shù)學(xué)結(jié)果解釋客觀現(xiàn)象、回答實際問題并接受客觀實際的檢驗。數(shù)學(xué)建模能彌補傳統(tǒng)數(shù)學(xué)教學(xué)在實際應(yīng)用方面的不足,促進數(shù)學(xué)教師在現(xiàn)代化教學(xué)手段、教學(xué)模式方面的更新。數(shù)學(xué)建模有助于調(diào)動學(xué)生的學(xué)習(xí)興趣,在計算機應(yīng)用能力、實踐能力和創(chuàng)新意識的培養(yǎng)方面都有著非常大的作用,以便學(xué)生將來能更好地適應(yīng)工作崗位。
    (二)高校教學(xué)改革的需要
    當(dāng)今社會信息高度發(fā)達,競爭日益激烈,必須具備一定的創(chuàng)新意識和創(chuàng)新能力,否則很難適應(yīng)社會信息時代的要求。傳統(tǒng)的教學(xué)模式是以課堂理論講授為主,學(xué)生絕大部分時間都集中學(xué)習(xí)書本知識,很少有機會接觸社會,也難做到學(xué)以致用。絕大多數(shù)課程都是教師的一言堂,考試也是以教師講課內(nèi)容為主。學(xué)生忙于記錄和背誦而閑置其聰慧的頭腦。長期的灌輸式教學(xué)導(dǎo)致學(xué)生明顯缺乏學(xué)習(xí)的主動性,會聽從而不會質(zhì)疑,更不會形成開創(chuàng)性的觀點,很難適應(yīng)企事業(yè)單位動態(tài)的工作環(huán)境。數(shù)學(xué)作為一門傳統(tǒng)基礎(chǔ)學(xué)科,對獨立學(xué)院的學(xué)生來說,學(xué)習(xí)上有一定的難度。我們的教學(xué)應(yīng)以“必需,夠用”為度。數(shù)學(xué)建模從形式到內(nèi)容,都與畢業(yè)后工作時的條件非常相近,是一次非常好的鍛煉,學(xué)生通過自主的學(xué)習(xí),把實際的問題轉(zhuǎn)化為數(shù)學(xué)理論解決,有助于學(xué)生創(chuàng)新能力的培養(yǎng)動手能力的提高,這也正是獨立學(xué)院院校應(yīng)用型本科人才培養(yǎng)的方向。
    (三)學(xué)生參加數(shù)學(xué)建模競賽的需要
    獨立學(xué)院學(xué)生思維活躍,且比較注重個人能力素質(zhì)的提高。很多學(xué)生愿意在學(xué)校參加一些競賽來提高自己。全國大學(xué)生數(shù)學(xué)建模競賽尤其受學(xué)生重視,但仍有很多大學(xué)生不了解這類競賽,因此,在數(shù)學(xué)課堂上引入數(shù)學(xué)建模思想,學(xué)生既了解了數(shù)學(xué)建模,又對數(shù)學(xué)公式提起了興趣,還有助于獨立學(xué)院學(xué)生在全國大學(xué)生數(shù)學(xué)建模競賽中取得優(yōu)異成績。
    高等數(shù)學(xué)的作用表現(xiàn)在為各專業(yè)后續(xù)課程的學(xué)習(xí)提供必要的數(shù)學(xué)知識,培養(yǎng)各專業(yè)學(xué)生的數(shù)學(xué)思想與數(shù)學(xué)修養(yǎng),全面提高大學(xué)生創(chuàng)新思維和應(yīng)用能力。只有把數(shù)學(xué)建模思想融入數(shù)學(xué)教學(xué)中,才能調(diào)動學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,培養(yǎng)學(xué)生的創(chuàng)新能力,實現(xiàn)提高學(xué)生綜合分析問題能力的最終目標(biāo)。
    作者:崔瑋王文麗單位:中國地質(zhì)大學(xué)長城學(xué)院信息工程系
    數(shù)學(xué)建模論文篇十四
    優(yōu)秀高教社杯全國大學(xué)生數(shù)學(xué)建模競賽題目
    (請先閱讀“全國大學(xué)生數(shù)學(xué)建模競賽論文格式規(guī)范”)
    a題城市表層土壤重金屬污染分析
    隨著城市經(jīng)濟的快速發(fā)展和城市人口的不斷增加,人類活動對城市環(huán)境質(zhì)量的影響日顯突出。對城市土壤地質(zhì)環(huán)境異常的查證,以及如何應(yīng)用查證獲得的海量數(shù)據(jù)資料開展城市環(huán)境質(zhì)量評價,研究人類活動影響下城市地質(zhì)環(huán)境的演變模式,日益成為人們關(guān)注的焦點。
    按照功能劃分,城區(qū)一般可分為生活區(qū)、工業(yè)區(qū)、山區(qū)、主干道路區(qū)及公園綠地區(qū)等,分別記為1類區(qū)、2類區(qū)、??、5類區(qū),不同的區(qū)域環(huán)境受人類活動影響的程度不同。
    現(xiàn)對某城市城區(qū)土壤地質(zhì)環(huán)境進行調(diào)查。為此,將所考察的城區(qū)劃分為間距1公里左右的網(wǎng)格子區(qū)域,按照每平方公里1個采樣點對表層土(0~10厘米深度)進行取樣、編號,并用gps記錄采樣點的位置。應(yīng)用專門儀器測試分析,獲得了每個樣本所含的多種化學(xué)元素的濃度數(shù)據(jù)。另一方面,按照2公里的間距在那些遠(yuǎn)離人群及工業(yè)活動的自然區(qū)取樣,將其作為該城區(qū)表層土壤中元素的背景值。
    附件1列出了采樣點的位置、海拔高度及其所屬功能區(qū)等信息,附件2列出了8種主要重金屬元素在采樣點處的濃度,附件3列出了8種主要重金屬元素的背景值。
    現(xiàn)要求你們通過數(shù)學(xué)建模來完成以下任務(wù):
    (1)給出8種主要重金屬元素在該城區(qū)的空間分布,并分析該城區(qū)內(nèi)不同區(qū)域重金屬的污染程度。
    (2)通過數(shù)據(jù)分析,說明重金屬污染的主要原因。
    (3)分析重金屬污染物的傳播特征,由此建立模型,確定污染源的位置。
    數(shù)學(xué)建模論文篇十五
    3.3增強選擇數(shù)學(xué)模型的能力。
    選擇數(shù)學(xué)模型是數(shù)學(xué)能力的反映。數(shù)學(xué)模型的建立有多種方法,怎樣選擇一個最佳的模型,體現(xiàn)數(shù)學(xué)能力的強弱。建立數(shù)學(xué)模型主要涉及到方程、函數(shù)、不等式、數(shù)列通項公式、求和公式、曲線方程等類型。結(jié)合教學(xué)內(nèi)容,以函數(shù)建模為例,以下實際問題所選擇的數(shù)學(xué)模型列表:
    函數(shù)建模類型實際問題
    一次函數(shù)成本、利潤、銷售收入等
    二次函數(shù)優(yōu)化問題、用料最省問題、造價最低、利潤最大等
    冪函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)細(xì)胞分裂、生物繁殖等
    三角函數(shù)測量、交流量、力學(xué)問題等
    3.4加強數(shù)學(xué)運算能力。
    數(shù)學(xué)應(yīng)用題一般運算量較大、較復(fù)雜,且有近似計算。有的盡管思路正確、建模合理,但計算能力欠缺,就會前功盡棄。所以加強數(shù)學(xué)運算推理能力是使數(shù)學(xué)建模正確求解的關(guān)鍵所在,忽視運算能力,特別是計算能力的培養(yǎng),只重視推理過程,不重視計算過程的做法是不可取的。
    利用數(shù)學(xué)建模解數(shù)學(xué)應(yīng)用題對于多角度、多層次、多側(cè)面思考問題,培養(yǎng)學(xué)生發(fā)散思維能力是很有益的,是提高學(xué)生素質(zhì),進行素質(zhì)教育的一條有效途徑。同時數(shù)學(xué)建模的`應(yīng)用也是科學(xué)實踐,有利于實踐能力的培養(yǎng),是實施素質(zhì)教育所必須的,需要引起教育工作者的足夠重視。
    數(shù)學(xué)建模論文篇十六
    :隨著經(jīng)濟的快速發(fā)展,我國的科學(xué)技術(shù)也得到了長足的進步,在計算機應(yīng)用方面,從對計算機技術(shù)尚存新鮮感到運用成熟,可以說有了質(zhì)的飛躍。在日常生活以及技術(shù)操作當(dāng)中,計算機已經(jīng)融入其中,廣泛地應(yīng)用于各行各業(yè),筆者以數(shù)學(xué)建模為例,分析了數(shù)學(xué)建模與計算機應(yīng)用之間的關(guān)系,與此同時,也探尋了計算機應(yīng)用技術(shù)在數(shù)學(xué)建模的輔助之下發(fā)揮的作用,并對數(shù)學(xué)建模進行概念定義,使得讀者能夠?qū)?shù)學(xué)建模的意義有著更深層次的了解,希望能夠起到促進二者之間的良性發(fā)展。
    數(shù)學(xué)建模;計算機技術(shù);計算機應(yīng)用
    隨著經(jīng)濟的快速發(fā)展,我國的科學(xué)技術(shù)也有了長足的進步,而與之密不可分的數(shù)學(xué)學(xué)科也有著不可小覷的進步,與此同時,數(shù)學(xué)學(xué)科的延伸領(lǐng)域從物理等逐漸擴展到環(huán)境、人口、社會、經(jīng)濟范圍,使得其作用力逐漸增強。不僅如此,數(shù)學(xué)學(xué)科由原本的研究事物的性質(zhì)分析逐漸轉(zhuǎn)變到研究定量性質(zhì)范圍,促進了多方面多層次的發(fā)展,由此可見,數(shù)學(xué)學(xué)科的重要性質(zhì)。在日常生活中,運用數(shù)學(xué)學(xué)科去解決實際問題時,首要完成的就是從復(fù)雜的事物中找到普遍的規(guī)律現(xiàn)象存在,并用最為清晰的數(shù)字、符號、公式等將潛在的信息表達出來,再運用計算機技術(shù)加以呈現(xiàn),形成人們所要完成的結(jié)果。筆者以數(shù)學(xué)建模為例,分析了數(shù)學(xué)建模與計算機應(yīng)用之間的關(guān)系,與此同時,也探尋了計算機應(yīng)用技術(shù)在數(shù)學(xué)建模的輔助之下發(fā)揮的作用,并對數(shù)學(xué)建模進行概念定義,使得讀者能夠?qū)?shù)學(xué)建模的意義有著更深層次的了解,希望能夠起到促進二者之間的良性發(fā)展。
    從宏觀角度上來講,數(shù)學(xué)建模是更側(cè)重于實際研究方面,并不僅僅是通過數(shù)字演示來完成事物的一般發(fā)展規(guī)律,與一般的理論研究截然不同。其研究范圍之廣,能夠深入到各個領(lǐng)域當(dāng)中,從任何一個相關(guān)領(lǐng)域中都能夠找到數(shù)學(xué)學(xué)科的發(fā)展軌跡,從中不難看出數(shù)學(xué)學(xué)科的實際意義與鮮明特點。數(shù)學(xué)為一門注重實際問題研究的學(xué)科,這一性質(zhì)方向決定了其研究的層次,其研究范圍大到漫無邊際的宇宙,小到對于個體微生物或者單細(xì)胞物體,綜合性之強形成了研究范圍廣的特點。多個學(xué)科之間互相影響,從中找到互相之間存在的相互聯(lián)系,其中有許多不能夠被忽視的數(shù)學(xué)元素,且這些元素都是至關(guān)重要的,所以這個計算過程十分復(fù)雜,計算量與數(shù)據(jù)驗算過程也十分耗費時間,因此需要充足的存儲空間支持這一過程的運行。在數(shù)學(xué)建模的過程當(dāng)中,所涉獵的數(shù)學(xué)算法并不是很簡單,而建立的模型也遵循個人習(xí)慣,因此建成的模型也不是一成不變的,但是都能夠得出相同的答案。正因如此,在數(shù)學(xué)建模的過程當(dāng)中,就需要使用各種輔助工具來完成這一過程。由于計算機軟件具有的高速運轉(zhuǎn)空間,使得計算機技術(shù)應(yīng)用于數(shù)學(xué)學(xué)科的建模過程當(dāng)中,與數(shù)學(xué)建模過程密不可分息息相關(guān)。由此可見,計算機技術(shù)的應(yīng)用水平對于數(shù)學(xué)學(xué)科的重要作用。
    2。1計算機的獨特性與數(shù)學(xué)建模的實際性特點計算機的獨特性與數(shù)學(xué)建模的實際性特點,使得二者之間有著密不可分的聯(lián)系,正是因為這種聯(lián)系使得雙方都能夠有長足的發(fā)展,在技術(shù)上是起著互相促進的作用。計算機的廣泛應(yīng)用為數(shù)學(xué)建模提供了較為便利的服務(wù),在使用過程當(dāng)中,數(shù)學(xué)建模也能夠起到完成對計算機技術(shù)的促進,能夠在這一過程中形成更為便捷高速的使用方法與途徑,使得計算機技術(shù)應(yīng)用更為靈活,也可以說數(shù)學(xué)建模為計算機技術(shù)的實際應(yīng)用提供了更為廣闊的應(yīng)用空間,從中不難發(fā)現(xiàn),數(shù)學(xué)建模對于計算機應(yīng)用技術(shù)的支持性。計算機應(yīng)用技術(shù)需要合成的是多方面的技術(shù)支持,而數(shù)學(xué)建模則是需要首要完成的,二者之間是相互影響共同促進的作用。
    2。2計算機為數(shù)學(xué)建模提供了重要的技術(shù)支持?jǐn)?shù)學(xué)建模對于計算機應(yīng)用技術(shù)的重要的指導(dǎo)意義與作用。第一點,計算機在其技術(shù)的支持之下,有著大量的存儲空間能夠完成存儲資料的這一過程,許多重要資料在計算機技術(shù)的保護之下,存儲時間較為長久,且保護力度較大,不容易被破壞及減少了不必要的人力以及物力;第二點,計算機是多媒體的一個分支,運用其成熟的互聯(lián)網(wǎng)思維技術(shù),能夠完成數(shù)學(xué)建模從平面到空間的轉(zhuǎn)化,能夠提供更為成熟的模擬環(huán)境,從而提高實踐的效率。由于數(shù)學(xué)建模過程的復(fù)雜化及對于實際問題的研究方向的特質(zhì),使得對于各項技術(shù)的要求就很高,所以,需要涉及的操作與數(shù)據(jù)量非常大,過程也十分復(fù)雜,常見的過程有三維打印、三維激光掃描等。這些都是需要計算機技術(shù)的支持才能夠完成的,所以對于計算機技術(shù)的要求非常高,與此同時,計算機應(yīng)用技術(shù)為數(shù)學(xué)建模提供了更為便捷、快速的解決方案與途徑。
    2。3數(shù)學(xué)建模為計算機的發(fā)展提供了基石計算機的產(chǎn)生起源于數(shù)學(xué)建模的過程,在二十世紀(jì)八十年代,由于導(dǎo)彈在飛行時的運行軌跡的計算量過大,人工無法滿足這一高速率的運算條件,基于這一背景條件,產(chǎn)生了計算機,計算機應(yīng)用技術(shù)由此拉開了序幕。數(shù)學(xué)建模的過程是需要計算機來完成的,在全部的過程當(dāng)中,計算機參與計算的比重很大,從某種意義程度上來講,計算機技術(shù)對于數(shù)學(xué)建模的發(fā)展是起著推動性的作用的,二者之間是有著聯(lián)系的。
    數(shù)學(xué)建模論文篇十七
    摘要:在新課改以后,要求教師要在教學(xué)中重視學(xué)生的主體地位,提升學(xué)生學(xué)習(xí)興趣,培養(yǎng)他們的自主學(xué)習(xí)能力。本文從小學(xué)數(shù)學(xué)教學(xué)過程中數(shù)學(xué)建模入手,對如何將數(shù)學(xué)建模運用到學(xué)生解題過程中進行了分析。
    關(guān)鍵詞:小學(xué)數(shù)學(xué);建模;運用
    數(shù)學(xué)建模是指利用數(shù)學(xué)模型的形式去解決實際中遇到的問題,換句話說,就是利用數(shù)學(xué)思維、數(shù)學(xué)方法解決各種數(shù)學(xué)問題。數(shù)學(xué)建模是在新課程改革后出現(xiàn)的新概念,經(jīng)過一段時間的觀察我們可以發(fā)現(xiàn),數(shù)學(xué)建模的方法能夠有效的提高學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生的數(shù)學(xué)能力。這種方式能夠?qū)?fù)雜的數(shù)學(xué)問題利用簡單的方式找到解決方案,是提高小學(xué)數(shù)學(xué)課堂效率及課堂質(zhì)量的有效手段。小學(xué)數(shù)學(xué)是小學(xué)學(xué)習(xí)中的重要課程之一,也是培養(yǎng)學(xué)生數(shù)學(xué)思維的重要階段??梢哉f,小學(xué)數(shù)學(xué)的學(xué)習(xí)是學(xué)生學(xué)習(xí)數(shù)學(xué)的關(guān)鍵,對今后的學(xué)習(xí)起到極大的影響。因此,對于小學(xué)數(shù)學(xué)教師來說,不斷的完善教學(xué)手段,提高數(shù)學(xué)課堂質(zhì)量是教學(xué)工作中的重中之重。而數(shù)學(xué)建模就是為了解決數(shù)學(xué)在生活中的實際問題,能夠讓學(xué)生感受到數(shù)學(xué)本身的魅力,培養(yǎng)他們的數(shù)學(xué)思維,提高數(shù)學(xué)學(xué)習(xí)能力,從而讓小學(xué)數(shù)學(xué)教學(xué)質(zhì)量也得到大幅度的提升。小學(xué)數(shù)學(xué)與數(shù)學(xué)建模之間有著密不可分的作用,兩者相互聯(lián)系、相互促進,如何有效的將數(shù)學(xué)建模運用在小學(xué)數(shù)學(xué)教學(xué)過程中,是每個小學(xué)數(shù)學(xué)教師都值得思考的問題。
    一、培養(yǎng)學(xué)生數(shù)學(xué)建模意識
    數(shù)學(xué)建模是為了解決數(shù)學(xué)中遇到的問題,數(shù)學(xué)本身特別是小學(xué)數(shù)學(xué)也是一門較貼近學(xué)生生活的學(xué)科。因此在數(shù)學(xué)學(xué)習(xí)中,教師要首先培養(yǎng)學(xué)生的數(shù)學(xué)學(xué)習(xí)意識,讓他們感受到數(shù)學(xué)與生活的緊密聯(lián)系,然后再引導(dǎo)學(xué)生用數(shù)學(xué)建模去解決遇到的問題。在這一過程中,數(shù)學(xué)教師要注意以下兩個問題:(一)在教學(xué)中一定要貼近學(xué)生的生活,課堂中所提出的問題也必須要符合生活實際,讓學(xué)生對所學(xué)內(nèi)容感到親切。積極引導(dǎo)學(xué)生利用多種方式解決同一問題,尤其是利用數(shù)學(xué)建模的方式,以達到培養(yǎng)他們的數(shù)學(xué)思維以及想象能力的目的。(二)在學(xué)生進行數(shù)學(xué)建模的過程中要利用多鼓勵的方式調(diào)動他們對數(shù)學(xué)學(xué)習(xí)的積極性,讓他們在數(shù)學(xué)建模中獲得成就感,增加自信心,以此來提高學(xué)生在今后學(xué)習(xí)中使用數(shù)學(xué)建模方法的熱情。
    二、提高學(xué)生想象力,用數(shù)學(xué)建模簡化問題
    對于小學(xué)生來說,他們的思維與其他年齡段相比極其活躍,擁有了豐富的想象力。在數(shù)學(xué)學(xué)習(xí)中,如果能將想象力與數(shù)學(xué)學(xué)習(xí)結(jié)合在一起,一定會得到意想不到的效果。教師可以根據(jù)小學(xué)生這一特點,提高他們的想象力,然后再引導(dǎo)他們利用數(shù)學(xué)建模解決問題,讓題目簡單化。具體來說,就是在面對復(fù)雜的'數(shù)學(xué)問題時,教師可以先為學(xué)生創(chuàng)建教學(xué)情境,以這樣的方式提高學(xué)生的學(xué)習(xí)興趣,讓他們愿意主動去深入的研究遇到的題目。之后教師再去對他們進行引導(dǎo),讓他們能夠理解題目中所提問題的含義,并能夠運用他們的想象能力思考解決問題的方式。最后再引導(dǎo)他們進行數(shù)學(xué)建模,解決問題。這樣的方式充分的利用了學(xué)生的想象能力,將所需解決的問題簡單化。
    三、選擇合適的題目作為建模案例
    在數(shù)學(xué)建模過程中,教師也要時刻牢記題目應(yīng)該貼近學(xué)生的生活,符合實際,并且具有一定的趣味性,讓他們有興趣投入到數(shù)學(xué)建模的過程中去,然后再反復(fù)練習(xí)之后達到提高他們建模能力的目的。在選擇數(shù)學(xué)建模案例時教師主要應(yīng)該注意以下兩點:首先,教師在選擇建模案例時要盡量選擇比較典型的問題,能夠讓學(xué)生在學(xué)習(xí)了該題目以后掌握這一類的解題方法,達到小學(xué)數(shù)學(xué)教學(xué)的目的。所以,這就需要教師對題目進行深入的分析,看是否在擁有趣味性、真實性的同時符合教學(xué)要求。其次,題目最好能夠擁有可變性,教師能夠通過對題目中已知條件的改變讓學(xué)生進行不同方面的建模練習(xí),以此提高他們數(shù)學(xué)建模的能力。
    四、引導(dǎo)學(xué)生主動進行數(shù)學(xué)建模
    在教師經(jīng)過反復(fù)的教學(xué)后,學(xué)生都已經(jīng)擁有了基本的數(shù)學(xué)建模知識,了解了數(shù)學(xué)建模過程,并且能夠在解題過程中簡單的使用數(shù)學(xué)建模。此時,教師在教學(xué)中就可以引導(dǎo)學(xué)生利用數(shù)學(xué)建模解決數(shù)學(xué)題目了。引導(dǎo)學(xué)生用數(shù)學(xué)建模方法解決數(shù)學(xué)問題,就要在解題過程中多對學(xué)生進行這一方面的鼓勵,讓他們提高建模信心。在這一過程中,教師還可以嘗試讓學(xué)生之間利用合作的方式讓他們進行數(shù)學(xué)建模方法的探討,并在探討的過程中吸取他人的經(jīng)驗,提高自己數(shù)學(xué)建模水平,同時這樣的方式能夠讓數(shù)學(xué)建模深入到每一個學(xué)生的心中,逐漸影響每一個學(xué)生的解題思路,讓他們能夠在解題過程中熟練運用建模的方式,提高解題能力。數(shù)學(xué)建模的方法能夠有效的改變過去的傳統(tǒng)教學(xué)思路,增加學(xué)生對數(shù)學(xué)的學(xué)習(xí)興趣,提高數(shù)學(xué)解題能力。這種教學(xué)方法對于小學(xué)數(shù)學(xué)教師來說,值得不斷的探討研究,并應(yīng)用在教學(xué)中,以此提高數(shù)學(xué)課堂的教學(xué)效率和教學(xué)質(zhì)量。
    數(shù)學(xué)建模論文篇十八
    1、從應(yīng)用數(shù)學(xué)出發(fā)數(shù)學(xué)建模主要是通過運用數(shù)學(xué)知識解決生活中遇到實際問題的全過程。要讓數(shù)學(xué)建模思想與大學(xué)數(shù)學(xué)教學(xué)課程進行有效的融合,最佳切入點就是課堂上把用數(shù)學(xué)解決生活中的實際問題與教學(xué)內(nèi)容相融合,以應(yīng)用數(shù)學(xué)為導(dǎo)向,訓(xùn)練學(xué)生綜合運用數(shù)學(xué)知識去刻畫實際問題、提煉數(shù)學(xué)模型、處理實際數(shù)據(jù)、分析解決實際問題的能力,培養(yǎng)學(xué)生運用數(shù)學(xué)原理解決生活問題的興趣和愛好。授課過程中,要改變以往單純地進行課堂灌輸?shù)男袨?,多引入?yīng)用數(shù)學(xué)的內(nèi)容,通過師生互動、課堂討論、小課題研究實踐等多種形式靈活多樣的教學(xué)方法,培養(yǎng)引導(dǎo)學(xué)生樹立應(yīng)用數(shù)學(xué)建模解決實際問題的思想。
    2、從數(shù)學(xué)實驗做起要加強獨立學(xué)院學(xué)生進行數(shù)學(xué)實驗的行為,筆者認(rèn)為數(shù)學(xué)建模與數(shù)學(xué)實驗有著密切的聯(lián)系,兩者都是從解決實際問題出發(fā),當(dāng)前的大學(xué)生數(shù)學(xué)實驗基本上是應(yīng)用數(shù)學(xué)軟件、數(shù)值計算、建立模型、過程演算和圖形顯示等一系列過程,因此進行數(shù)學(xué)實驗的全過程就是數(shù)學(xué)建模思想的啟發(fā)過程。但是我國的教育資源和教學(xué)方針限制了獨立學(xué)院學(xué)生的學(xué)習(xí)環(huán)境和學(xué)習(xí)資源,能夠進行數(shù)學(xué)實驗的條件還是有限的。即使個別有實驗?zāi)芰Φ膶W(xué)校,也未能進行充分利用,數(shù)學(xué)實驗課的內(nèi)容隨意性較大,有些院校將其降格為軟件學(xué)習(xí)課程或初級算法課。根據(jù)調(diào)研,目前大部分獨立學(xué)院未開設(shè)此類課程,這是數(shù)學(xué)建模思想與大學(xué)數(shù)學(xué)教學(xué)課程融合的一大損失,不利于學(xué)生創(chuàng)新思維能力的提高。各校應(yīng)當(dāng)積極創(chuàng)造條件,把數(shù)學(xué)實驗課設(shè)為大學(xué)數(shù)學(xué)的必修課,爭取設(shè)立數(shù)學(xué)建模選修課,并積極探索、逐步實現(xiàn)把數(shù)學(xué)建模的思想和方法融入大學(xué)數(shù)學(xué)的主干課程。
    3、從計算機應(yīng)用切入數(shù)學(xué)是為理、工、經(jīng)、管、農(nóng)、醫(yī)、文等眾多學(xué)科服務(wù)的基礎(chǔ)工具,它在不同的領(lǐng)域因為應(yīng)用程度不同而導(dǎo)致被重視的程度不同。但在當(dāng)今的信息化時代,計算機的廣泛應(yīng)用和計算技術(shù)的飛速發(fā)展,使科學(xué)計算和數(shù)值模擬已成為絕大多數(shù)學(xué)科的必要工具和常用手段。數(shù)學(xué)在不同學(xué)科領(lǐng)域有了共同的主題,即應(yīng)用數(shù)學(xué)建模,通過計算機對各自領(lǐng)域的科學(xué)研究、生活問題等進行模擬分析,這成為數(shù)學(xué)建模思想在跨學(xué)科領(lǐng)域交流和傳播的一個重要途徑。每個領(lǐng)域的教學(xué)可以計算機應(yīng)用為切入點,讓數(shù)學(xué)建模思想與數(shù)學(xué)授課無縫結(jié)合,在提高學(xué)生掌握知識能力、挖掘培養(yǎng)創(chuàng)新思維的同時,增加了大學(xué)數(shù)學(xué)課程內(nèi)容的豐富性、實用性,促進教學(xué)手段變革和創(chuàng)新。因此,大學(xué)應(yīng)以適應(yīng)現(xiàn)代信息技術(shù)發(fā)展的形勢和學(xué)生將來的需求為契機,加快改進大學(xué)數(shù)學(xué)課程教學(xué)方式,把數(shù)學(xué)建模的思想和方法以及現(xiàn)代計算技術(shù)和計算工具盡快融入大學(xué)數(shù)學(xué)的主干課程當(dāng)中。
    大學(xué)數(shù)學(xué)課程是大學(xué)工科各專業(yè)培養(yǎng)計劃中重要的公共基礎(chǔ)理論課,其目的在于培養(yǎng)工程技術(shù)人才所必備的數(shù)學(xué)素質(zhì),為培養(yǎng)我國現(xiàn)代化建設(shè)需要的高素質(zhì)人才服務(wù)。數(shù)學(xué)建模課程的必修化,要從能夠擴充學(xué)生的知識結(jié)構(gòu),培養(yǎng)學(xué)生的創(chuàng)造性思維能力、抽象概括能力、邏輯推理能力、自學(xué)能力、分析問題和解決問題能力的角度出發(fā),建立適合獨立學(xué)院學(xué)生的數(shù)學(xué)建模教學(xué)內(nèi)容。日前獨立學(xué)院開展數(shù)學(xué)建?;顒由婕皟?nèi)容較淺,缺少相應(yīng)的數(shù)學(xué)建模和數(shù)學(xué)實驗方而的教材。筆者近幾年通過承擔(dān)此類課題的研究,認(rèn)為應(yīng)該加強以下內(nèi)容的建設(shè):
    。2、開設(shè)選修課拓展知識領(lǐng)域,讓學(xué)生可以通過選修數(shù)學(xué)建模、運籌學(xué)、開設(shè)數(shù)學(xué)實驗(介紹matlab、maple等計算軟件課程),增加建立和解答數(shù)學(xué)模型的方法和技巧。比如以前用的“文曲星”電子詞典里的貸款計算,就是一個典型的運用數(shù)學(xué)模型方便百姓自己計算的應(yīng)用。這個模型單靠數(shù)學(xué)和經(jīng)濟學(xué)單方面的知識是不夠的,必須把數(shù)學(xué)與經(jīng)濟學(xué)聯(lián)系在一起,才能有效解決生活中的問題。
    3、積極組織學(xué)生開展或是參加數(shù)學(xué)建模大賽比賽是各個選手充分發(fā)揮水平、展示自己智慧的途徑,也是數(shù)學(xué)建模思想傳播的最好手段。比賽可以讓各個選手發(fā)現(xiàn)自己的不足,尋找自身數(shù)學(xué)建模出發(fā)點的缺陷,通過交流,還可以拓展學(xué)生思維。因此,有必要積極組織學(xué)生參入初等數(shù)學(xué)知識可以解決的數(shù)學(xué)模型、線性規(guī)劃模型、指派問題模型、存儲問題模型、圖論應(yīng)用題等方面的模擬競賽,通過參賽積累大量數(shù)學(xué)建模知識,促進數(shù)學(xué)建模在教學(xué)中扮演更重要的`角色。教師應(yīng)該對歷年的全國大學(xué)生數(shù)學(xué)建模競賽真題進行認(rèn)真的解讀分析,通過對有意義的題目,如20xx年的《葡萄酒的評價》、《太陽能小屋的設(shè)計》,20xx年的《交巡警服務(wù)平臺的設(shè)置與調(diào)度車燈線光源的計算》、20xx年的《眼科病床的合理安排》等,與生活相關(guān)的例子進行講解分析,提高學(xué)生對數(shù)學(xué)建模的興趣和對模型應(yīng)用的直觀的認(rèn)識,實現(xiàn)學(xué)校應(yīng)用型人才的培養(yǎng)。
    4、加快教育方式的轉(zhuǎn)變高等教育設(shè)立數(shù)學(xué)這門學(xué)科就是為了應(yīng)用服務(wù),內(nèi)容應(yīng)重點放在基本概念、定理、公式等在生活中的應(yīng)用上。而傳統(tǒng)的高等數(shù)學(xué),除了推導(dǎo)就是證明,因此,要對傳統(tǒng)內(nèi)容進行優(yōu)化組合,根據(jù)教學(xué)特點和學(xué)生情況推陳出新,要注重數(shù)學(xué)思想的滲透和數(shù)學(xué)方法的介紹,對高等數(shù)學(xué)精髓的求導(dǎo)、微分方法、積分方法等的授課要重點放在解決實際生活的應(yīng)用上。要結(jié)合一些社會實踐問題與函數(shù)建立的關(guān)系,分析確定變量、參數(shù),加強有關(guān)函數(shù)關(guān)系式建立的日常訓(xùn)練。培養(yǎng)學(xué)生對一些問題的邏輯分析、抽象、簡化并用數(shù)學(xué)語言表達的能力,逐步將學(xué)生帶入遇到問題就能自然地去轉(zhuǎn)化成數(shù)學(xué)模型進行處理的境界,并能將數(shù)學(xué)結(jié)論又能很好反向轉(zhuǎn)化成實際應(yīng)用。
    21世紀(jì)我國進入了大眾教育時期,高校招生人數(shù)劇增,學(xué)生水平差距較大,需要學(xué)校瞄準(zhǔn)正確的培養(yǎng)方向。通過對美國教學(xué)改革的研究,筆者認(rèn)為我國的數(shù)學(xué)建模思想與大學(xué)數(shù)學(xué)教學(xué)課程融合必須盡快在大學(xué)中廣泛推進,但要注意一些問題:第一,數(shù)學(xué)教學(xué)改革一定要基于學(xué)生的現(xiàn)實水平,數(shù)學(xué)建模思想融入要與時俱進。第二,教學(xué)目標(biāo)要正確定位,融合過程一定要與教學(xué)研究相結(jié)合,要在加強交流的基礎(chǔ)上不斷改進。第三,大學(xué)生數(shù)學(xué)建模競賽的舉辦和參入,要給予正確的理解和引導(dǎo),形成良性循環(huán)。要根據(jù)個人興趣愛好,注重個性,不應(yīng)面面強求。第四,傳統(tǒng)數(shù)學(xué)思想與現(xiàn)在數(shù)學(xué)建模思想必須互補,必修與選修課程的作用與角色要分清。數(shù)學(xué)主干課程的教學(xué)水平是大學(xué)教學(xué)質(zhì)量的關(guān)鍵指標(biāo)之一,具備數(shù)學(xué)建模思想是理工類大學(xué)生能否成為創(chuàng)新人才的重要條件之一。兩者的融合必將促進我國教學(xué)水平和質(zhì)量的提高,為社會輸送更多的實用型、創(chuàng)新型人才。