最新人教版初三數(shù)學(xué)教案全冊(cè)(模板5篇)

2025/6/8 10:59:01

|

字號(hào):

    作為一名專(zhuān)為他人授業(yè)解惑的人民教師,就有可能用到教案,編寫(xiě)教案助于積累教學(xué)經(jīng)驗(yàn),不斷提高教學(xué)質(zhì)量。教案書(shū)寫(xiě)有哪些要求呢?我們?cè)鯓硬拍軐?xiě)好一篇教案呢?以下是小編為大家收集的教案范文,僅供參考,大家一起來(lái)看看吧。
    人教版初三數(shù)學(xué)教案全冊(cè)篇一
    課堂教學(xué)是師生的雙邊活動(dòng)。課堂教學(xué)的實(shí)質(zhì)是師生雙方的信息交流,共同學(xué)校的過(guò)程。教師得知學(xué)生在數(shù)學(xué)學(xué)習(xí)很困難時(shí),是否想到了可能教師自己對(duì)教材理解不夠,沒(méi)有準(zhǔn)確地把握教材的重點(diǎn)、難點(diǎn),對(duì)教材內(nèi)容層次沒(méi)有理清和教學(xué)方法不適呢?《數(shù)學(xué)課程標(biāo)準(zhǔn)》指導(dǎo)下,我們的數(shù)學(xué)教學(xué)目的是要學(xué)生在數(shù)學(xué)學(xué)習(xí)中,由“聽(tīng)”到“懂”,再到“會(huì)”,最后到“通”。為此,教師必須深刻反思自己的教育教學(xué)行為,批判性地考察自我主體行為表現(xiàn)及其行為依據(jù)。通過(guò)觀察、回顧、診斷、自我監(jiān)控等方式,或給予肯定、支持與強(qiáng)化,或給予否定、思索與修正,將“學(xué)會(huì)教學(xué)”與“學(xué)會(huì)學(xué)習(xí)”結(jié)合起來(lái),從而努力提升教學(xué)實(shí)踐的合理性,提高課堂教學(xué)效能,到達(dá)提高教學(xué)質(zhì)量的目的?,F(xiàn)就以下幾方面談?wù)勛约旱目捶ā?BR>    一、教師要反思教育觀念
    新課標(biāo)下要求教師要改變學(xué)科的教育觀,始終體現(xiàn)“學(xué)生是教學(xué)活動(dòng)的主體”科學(xué)理念,著眼于學(xué)生的終身發(fā)展,注重培養(yǎng)學(xué)生濃厚的學(xué)習(xí)興趣和正確的學(xué)習(xí)習(xí)慣。數(shù)學(xué)非常重視教學(xué)內(nèi)容與實(shí)際生活的緊密聯(lián)系。但是在教學(xué)活動(dòng)中還是有不少教師習(xí)慣于傳統(tǒng)的教學(xué)模式,偏重于知識(shí)的傳授,強(qiáng)調(diào)接受式學(xué)習(xí),這樣使很多學(xué)生在學(xué)習(xí)數(shù)學(xué)上失去了興趣。教學(xué)中教師要抓住時(shí)機(jī),不斷地引導(dǎo)學(xué)生在設(shè)疑、質(zhì)疑、解疑的過(guò)程中,創(chuàng)設(shè)認(rèn)知“沖突”,激發(fā)學(xué)生持續(xù)的學(xué)習(xí)興趣和求知欲 望,順利地建立數(shù)學(xué)概念,把握數(shù)學(xué)定義、定理和規(guī)律。
    教師在探究教學(xué)中要立足與培養(yǎng)學(xué)生的獨(dú)立性和自主性,引導(dǎo)他們質(zhì)疑、調(diào)查和探究,學(xué)會(huì)在實(shí)踐中學(xué),在合作中學(xué),逐步形成適合于自己的學(xué)習(xí)策略。例如,在學(xué)習(xí)等腰三角形三線合一的性質(zhì)時(shí)可以讓三個(gè)同學(xué)合作分別去畫(huà)出頂角平分線、底邊上的高、底邊上的中線,這是學(xué)生會(huì)發(fā)現(xiàn)三條線為什么會(huì)是一條線?證明三角形全等的方法有多種,為什么“角邊邊”不能判定兩三角形全等?在學(xué)習(xí)鑲嵌時(shí),可以提這樣的問(wèn)題,為什么正三角形、正方形、長(zhǎng)方形正六邊形可以,而正五邊形不可以?等等。
    這樣教師不斷地設(shè)問(wèn),不斷地質(zhì)疑,就能引導(dǎo)學(xué)生進(jìn)行積極思考,激發(fā)起學(xué)生濃厚的學(xué)習(xí)興趣和求知欲 望,促使學(xué)生在生活中發(fā)現(xiàn)和歸納各種各樣的數(shù)學(xué)規(guī)律,為下一步學(xué)習(xí)數(shù)學(xué)知識(shí)打下堅(jiān)實(shí)的基礎(chǔ)。所以我們的教師必須反思自己的教育觀念,緊緊抓住主導(dǎo)和主體的關(guān)系,解決好學(xué)生學(xué)習(xí)積極性的問(wèn)題。
    二、教師要反思教學(xué)設(shè)計(jì)
    教學(xué)設(shè)計(jì)是課堂教學(xué)的藍(lán)本,是對(duì)課堂教學(xué)的整體規(guī)劃和預(yù)設(shè),勾勒出了課堂教學(xué)活動(dòng)的效益取向。設(shè)計(jì)教學(xué)方案時(shí),教師對(duì)當(dāng)前的教學(xué)內(nèi)容及其地位(概念的“解構(gòu)”、思想方法的“析出”、相關(guān)知識(shí)的聯(lián)系方式等),學(xué)生已有知識(shí)經(jīng)驗(yàn),教學(xué)目的,重點(diǎn)與難點(diǎn),如何依據(jù)學(xué)生已有認(rèn)知水平和知識(shí)的邏輯過(guò)程設(shè)計(jì)教學(xué)過(guò)程,如何突出重點(diǎn)和突破難點(diǎn),學(xué)生在理解概念和思想方法時(shí)可能會(huì)出現(xiàn)哪些情況以及如何處理這些情況,設(shè)計(jì)哪些練習(xí)以鞏固新知識(shí),如何評(píng)價(jià)學(xué)生的學(xué)習(xí)效果等,都應(yīng)該有一定的思考和預(yù)設(shè)。教學(xué)設(shè)計(jì)的反思就是對(duì)這些思考和預(yù)設(shè)是否考慮到
    了。教學(xué)后,要對(duì)實(shí)際進(jìn)程和學(xué)生的接受程度進(jìn)行比較和反思,找出成功和不足之處及其原因,從而有效地改進(jìn)教學(xué)。
    三、教師要反思教學(xué)方法
    教師教得好,本質(zhì)上講是學(xué)生學(xué)得好。在實(shí)際教學(xué)過(guò)程中我們的教學(xué)方法是否合乎學(xué)生實(shí)際呢?上課、評(píng)卷、答疑解難時(shí),有的教師自以為講清楚明白了,學(xué)生受到了一定的啟發(fā),但反思后發(fā)現(xiàn),教師的講解并沒(méi)有很好地從學(xué)生原有的知識(shí)基礎(chǔ)出發(fā),從根本上解決學(xué)生認(rèn)識(shí)上鴻溝問(wèn)題。有的教師只是一味的設(shè)想按照自己某個(gè)固定的程序去解決某一類(lèi)問(wèn)題,也許學(xué)生當(dāng)時(shí)聽(tīng)明白了,但往往是是而非,并沒(méi)有真正理解問(wèn)題的本質(zhì)。
    初中數(shù)學(xué)教學(xué)中,例習(xí)題教學(xué)是數(shù)學(xué)教學(xué)中重要的組成部分,是概念類(lèi)教學(xué)的延伸和發(fā)展。教材中的例習(xí)題都是編者精心編制的,具有典型性和啟發(fā)性,它們不僅是對(duì)基礎(chǔ)知識(shí)的鞏固,同時(shí)對(duì)培養(yǎng)學(xué)生智力、掌握數(shù)學(xué)思想和方法,及培養(yǎng)學(xué)生應(yīng)用數(shù)學(xué)意識(shí)和能力,提高學(xué)生的數(shù)學(xué)素養(yǎng)等都有重要意義。
    四、教師要反思學(xué)生學(xué)習(xí)方法
    《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出,有效的數(shù)學(xué)學(xué)習(xí)活動(dòng)不能單純依賴(lài)模仿與記憶,動(dòng)手實(shí)踐、自主探索與合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式,因此,轉(zhuǎn)變數(shù)學(xué)學(xué)習(xí)方式,倡導(dǎo)有意義的學(xué)習(xí)方式是課程改革的核心任務(wù)。初中學(xué)生年齡一般在十二至十六歲之間,正處生長(zhǎng)發(fā)育期,思想不成熟,行為不穩(wěn)定,辦事情緒化,喜表露,易沖動(dòng),既有面見(jiàn)師長(zhǎng)的羞澀,有初生牛犢不怕虎的習(xí)性。在數(shù)學(xué)學(xué)習(xí)上憑興趣,看心情,個(gè)性反映較為突出,有不少學(xué)生學(xué)習(xí)方法也存在一定的問(wèn)題。同時(shí)他們往往又很難發(fā)現(xiàn)自己的學(xué)習(xí)方法不妥。所以,教師就應(yīng)該反思學(xué)生的學(xué)習(xí)方法,找一找哪些問(wèn)題,并幫助他們努力改變不恰當(dāng)?shù)姆椒ǎ箤W(xué)生達(dá)到《新課標(biāo)》的要求。
    總之,為學(xué)之道,必本與思,思則得之,不思則不得。教學(xué)也是這個(gè)規(guī)律,只教不思就會(huì)成為教死書(shū)的教書(shū)匠,學(xué)生也得不到很好的受益。要想成為優(yōu)秀的教師,只有一邊教書(shū)一邊總結(jié),一邊教書(shū)一邊反思,才能實(shí)現(xiàn)自己的目的。
    人教版初三數(shù)學(xué)教案全冊(cè)篇二
    理解一元二次方程求根公式的推導(dǎo)過(guò)程,了解公式法的概念,會(huì)熟練應(yīng)用公式法解一元二次方程.
    復(fù)習(xí)具體數(shù)字的一元二次方程配方法的解題過(guò)程,引入ax2+bx+c=0(a≠0)的求根公式的推導(dǎo),并應(yīng)用公式法解一元二次方程.
    重點(diǎn)
    求根公式的推導(dǎo)和公式法的應(yīng)用.
    難點(diǎn)
    一元二次方程求根公式的推導(dǎo).
    一、復(fù)習(xí)引入
    1.前面我們學(xué)習(xí)過(guò)解一元二次方程的“直接開(kāi)平方法”,比如,方程
    (1)x2=4(2)(x-2)2=7
    提問(wèn)1這種解法的(理論)依據(jù)是什么?
    提問(wèn)2這種解法的局限性是什么?(只對(duì)那種“平方式等于非負(fù)數(shù)”的特殊二次方程有效,不能實(shí)施于一般形式的二次方程.)
    2.面對(duì)這種局限性,怎么辦?(使用配方法,把一般形式的二次方程配方成能夠“直接開(kāi)平方”的形式.)
    (學(xué)生活動(dòng))用配方法解方程2x2+3=7x
    (老師點(diǎn)評(píng))略
    總結(jié)用配方法解一元二次方程的步驟(學(xué)生總結(jié),老師點(diǎn)評(píng)).
    (1)先將已知方程化為一般形式;
    (2)化二次項(xiàng)系數(shù)為1;
    (3)常數(shù)項(xiàng)移到右邊;
    (4)方程兩邊都加上一次項(xiàng)系數(shù)的一半的平方,使左邊配成一個(gè)完全平方式;
    (5)變形為(x+p)2=q的形式,如果q≥0,方程的根是x=-p±q;如果q<0,方程無(wú)實(shí)根.
    二、探索新知
    用配方法解方程:
    (1)ax2-7x+3=0(2)ax2+bx+3=0
    如果這個(gè)一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步驟求出它們的兩根,請(qǐng)同學(xué)獨(dú)立完成下面這個(gè)問(wèn)題.
    問(wèn)題:已知ax2+bx+c=0(a≠0),試推導(dǎo)它的兩個(gè)根x1=-b+b2-4ac2a,x2=-b-b2-4ac2a(這個(gè)方程一定有解嗎?什么情況下有解?)
    分析:因?yàn)榍懊婢唧w數(shù)字已做得很多,我們現(xiàn)在不妨把a(bǔ),b,c也當(dāng)成一個(gè)具體數(shù)字,根據(jù)上面的解題步驟就可以一直推下去.
    解:移項(xiàng),得:ax2+bx=-c
    二次項(xiàng)系數(shù)化為1,得x2+bax=-ca
    配方,得:x2+bax+(b2a)2=-ca+(b2a)2
    即(x+b2a)2=b2-4ac4a2
    ∵4a2>0,當(dāng)b2-4ac≥0時(shí),b2-4ac4a2≥0
    ∴(x+b2a)2=(b2-4ac2a)2
    直接開(kāi)平方,得:x+b2a=±b2-4ac2a
    即x=-b±b2-4ac2a
    ∴x1=-b+b2-4ac2a,x2=-b-b2-4ac2a
    由上可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系數(shù)a,b,c而定,因此:
    (1)解一元二次方程時(shí),可以先將方程化為一般形式ax2+bx+c=0,當(dāng)b2-4ac≥0時(shí),將a,b,c代入式子x=-b±b2-4ac2a就得到方程的根.
    (2)這個(gè)式子叫做一元二次方程的求根公式.
    (3)利用求根公式解一元二次方程的方法叫公式法.
    公式的理解
    (4)由求根公式可知,一元二次方程最多有兩個(gè)實(shí)數(shù)根.
    例1用公式法解下列方程:
    (1)2x2-x-1=0(2)x2+1.5=-3x
    (3)x2-2x+12=0(4)4x2-3x+2=0
    分析:用公式法解一元二次方程,首先應(yīng)把它化為一般形式,然后代入公式即可.
    補(bǔ):(5)(x-2)(3x-5)=0
    三、鞏固練習(xí)
    教材第12頁(yè)練習(xí)1.(1)(3)(5)或(2)(4)(6).
    四、課堂小結(jié)
    本節(jié)課應(yīng)掌握:
    (1)求根公式的概念及其推導(dǎo)過(guò)程;
    (2)公式法的概念;
    (3)應(yīng)用公式法解一元二次方程的步驟:1)將所給的方程變成一般形式,注意移項(xiàng)要變號(hào),盡量讓a>0;2)找出系數(shù)a,b,c,注意各項(xiàng)的系數(shù)包括符號(hào);3)計(jì)算b2-4ac,若結(jié)果為負(fù)數(shù),方程無(wú)解;4)若結(jié)果為非負(fù)數(shù),代入求根公式,算出結(jié)果.
    (4)初步了解一元二次方程根的情況.
    五、作業(yè)布置
    教材第17頁(yè)習(xí)題4
    人教版初三數(shù)學(xué)教案全冊(cè)篇三
    一、內(nèi)容簡(jiǎn)介
    本節(jié)課的主題:通過(guò)一系列的探究活動(dòng),引導(dǎo)學(xué)生從計(jì)算結(jié)果中總結(jié)出完全平方公式的兩種形式。
    關(guān)鍵信息:
    1、以教材作為出發(fā)點(diǎn),依據(jù)《數(shù)學(xué)課程標(biāo)準(zhǔn)》,引導(dǎo)學(xué)生體會(huì)、參與科學(xué)探究過(guò)程。首先提出等號(hào)左邊的兩個(gè)相乘的多項(xiàng)式和等號(hào)右邊得出的三項(xiàng)有什么關(guān)系。通過(guò)學(xué)生自主、獨(dú)立的發(fā)現(xiàn)問(wèn)題,對(duì)可能的答案做出假設(shè)與猜想,并通過(guò)多次的檢驗(yàn),得出正確的結(jié)論。學(xué)生通過(guò)收集和處理信息、表達(dá)與交流等活動(dòng),獲得知識(shí)、技能、方法、態(tài)度特別是創(chuàng)新精神和實(shí)踐能力等方面的發(fā)展。
    2、用標(biāo)準(zhǔn)的數(shù)學(xué)語(yǔ)言得出結(jié)論,使學(xué)生感受科學(xué)的嚴(yán)謹(jǐn),啟迪學(xué)習(xí)態(tài)度和方法。
    二、學(xué)習(xí)者分析:
    1、在學(xué)習(xí)本課之前應(yīng)具備的基本知識(shí)和技能:
    ①同類(lèi)項(xiàng)的定義。
    ②合并同類(lèi)項(xiàng)法則
    ③多項(xiàng)式乘以多項(xiàng)式法則。
    2、學(xué)習(xí)者對(duì)即將學(xué)習(xí)的內(nèi)容已經(jīng)具備的水平:
    在學(xué)習(xí)完全平方公式之前,學(xué)生已經(jīng)能夠整理出公式的右邊形式。這節(jié)課的目的就是讓學(xué)生從等號(hào)的左邊形式和右邊形式之間的關(guān)系,總結(jié)出公式的應(yīng)用方法。
    三、教學(xué)/學(xué)習(xí)目標(biāo)及其對(duì)應(yīng)的課程標(biāo)準(zhǔn):
    (一)教學(xué)目標(biāo):
    1、經(jīng)歷探索完全平方公式的過(guò)程,進(jìn)一步發(fā)展符號(hào)感和推力能力。
    2、會(huì)推導(dǎo)完全平方公式,并能運(yùn)用公式進(jìn)行簡(jiǎn)單的計(jì)算。
    (二)知識(shí)與技能:經(jīng)歷從具體情境中抽象出符號(hào)的過(guò)程,認(rèn)識(shí)有理數(shù)、實(shí)數(shù)、代數(shù)式、防城、不等式、函數(shù);掌握必要的運(yùn)算,(包括估算)技能;探索具體問(wèn)題中的數(shù)量關(guān)系和變化規(guī)律,并能運(yùn)用代數(shù)式、防城、不等式、函數(shù)等進(jìn)行描述。
    (四)解決問(wèn)題:能結(jié)合具體情景發(fā)現(xiàn)并提出數(shù)學(xué)問(wèn)題;嘗試從不同角度尋求解決問(wèn)題的方法,并能有效地解決問(wèn)題,嘗試評(píng)價(jià)不同方法之間的差異;通過(guò)對(duì)解決問(wèn)題過(guò)程的反思,獲得解決問(wèn)題的經(jīng)驗(yàn)。
    (五)情感與態(tài)度:敢于面對(duì)數(shù)學(xué)活動(dòng)中的困難,并有獨(dú)立克服困難和運(yùn)用知識(shí)解決問(wèn)題的成功體驗(yàn),有學(xué)好數(shù)學(xué)的自信心;并尊重與理解他人的見(jiàn)解;能從交流中獲益。
    四、教育理念和教學(xué)方式:
    1、教師是學(xué)生學(xué)習(xí)的組織者、促進(jìn)者、合作者:學(xué)生是學(xué)習(xí)的主人,在教師指導(dǎo)下主動(dòng)的、富有個(gè)性的學(xué)習(xí),用自己的身體去親自經(jīng)歷,用自己的心靈去親自感悟。
    教學(xué)是師生交往、積極互動(dòng)、共同發(fā)展的過(guò)程。當(dāng)學(xué)生迷路的時(shí)候,教師不輕易告訴方向,而是引導(dǎo)他怎樣去辨明方向;當(dāng)學(xué)生登山畏懼了的時(shí)候,教師不是拖著他走,而是喚起他內(nèi)在的精神動(dòng)力,鼓勵(lì)他不斷向上攀登。
    2、采用“問(wèn)題情景—探究交流—得出結(jié)論—強(qiáng)化訓(xùn)練”的模式
    展開(kāi)教學(xué)。
    3、教學(xué)評(píng)價(jià)方式:
    (1)通過(guò)課堂觀察,關(guān)注學(xué)生在觀察、總結(jié)、訓(xùn)練等活動(dòng)中的主動(dòng)參與程度與合作交流意識(shí),及時(shí)給與鼓勵(lì)、強(qiáng)化、指導(dǎo)和矯正。
    (2)通過(guò)判斷和舉例,給學(xué)生更多機(jī)會(huì),在自然放松的狀態(tài)下,揭示思維過(guò)程和反饋知識(shí)與技能的掌握情況,使老師可以及時(shí)診斷學(xué)情,調(diào)查教學(xué)。
    (3)通過(guò)課后訪談和作業(yè)分析,及時(shí)查漏補(bǔ)缺,確保達(dá)到預(yù)期的教學(xué)效果。
    五、教學(xué)媒體:多媒體
    六、教學(xué)和活動(dòng)過(guò)程:
    教學(xué)過(guò)程設(shè)計(jì)如下:
    〈一〉、提出問(wèn)題
    [引入]同學(xué)們,前面我們學(xué)習(xí)了多項(xiàng)式乘多項(xiàng)式法則和合并同類(lèi)項(xiàng)法則,通過(guò)運(yùn)算下列四個(gè)小題,你能總結(jié)出結(jié)果與多項(xiàng)式中兩個(gè)單項(xiàng)式的關(guān)系嗎?
    (2m+3n)2=_______________,(-2m-3n)2=______________,
    (2m-3n)2=_______________,(-2m+3n)2=_______________。
    〈二〉、分析問(wèn)題
    1、[學(xué)生回答]分組交流、討論
    (2m+3n)2=4m2+12mn+9n2,(-2m-3n)2=4m2+12mn+9n2,
    (2m-3n)2=4m2-12mn+9n2,(-2m+3n)2=4m2-12mn+9n2。
    (1)原式的特點(diǎn)。
    (2)結(jié)果的項(xiàng)數(shù)特點(diǎn)。
    (3)三項(xiàng)系數(shù)的特點(diǎn)(特別是符號(hào)的特點(diǎn))。
    (4)三項(xiàng)與原多項(xiàng)式中兩個(gè)單項(xiàng)式的關(guān)系。
    2、[學(xué)生回答]總結(jié)完全平方公式的語(yǔ)言描述:
    兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍;
    兩數(shù)差的平方,等于它們平方的和,減去它們乘積的兩倍。
    3、[學(xué)生回答]完全平方公式的數(shù)學(xué)表達(dá)式:
    (a+b)2=a2+2ab+b2;
    (a-b)2=a2-2ab+b2.
    〈三〉、運(yùn)用公式,解決問(wèn)題
    1、口答:(搶答形式,活躍課堂氣氛,激發(fā)學(xué)生的學(xué)習(xí)積極性)
    (m+n)2=____________,(m-n)2=_______________,
    (-m+n)2=____________,(-m-n)2=______________,
    (a+3)2=______________,(-c+5)2=______________,
    (-7-a)2=______________,(0.5-a)2=______________.
    2、判斷:
    ()①(a-2b)2=a2-2ab+b2
    ()②(2m+n)2=2m2+4mn+n2
    ()③(-n-3m)2=n2-6mn+9m2
    ()④(5a+0.2b)2=25a2+5ab+0.4b2
    ()⑤(5a-0.2b)2=5a2-5ab+0.04b2
    ()⑥(-a-2b)2=(a+2b)2
    ()⑦(2a-4b)2=(4a-2b)2
    ()⑧(-5m+n)2=(-n+5m)2
    3、小試牛刀
    ①(x+y)2=______________;②(-y-x)2=_______________;
    ③(2x+3)2=_____________;④(3a-2)2=_______________;
    ⑤(2x+3y)2=____________;⑥(4x-5y)2=______________;
    ⑦(0.5m+n)2=___________;⑧(a-0.6b)2=_____________.
    〈四〉、[學(xué)生小結(jié)]
    你認(rèn)為完全平方公式在應(yīng)用過(guò)程中,需要注意那些問(wèn)題?
    (1)公式右邊共有3項(xiàng)。
    (2)兩個(gè)平方項(xiàng)符號(hào)永遠(yuǎn)為正。
    (3)中間項(xiàng)的符號(hào)由等號(hào)左邊的兩項(xiàng)符號(hào)是否相同決定。
    (4)中間項(xiàng)是等號(hào)左邊兩項(xiàng)乘積的2倍。
    〈五〉、冒險(xiǎn)島:
    (1)(-3a+2b)2=________________________________
    (2)(-7-2m)2=__________________________________
    (3)(-0.5m+2n)2=_______________________________
    (4)(3/5a-1/2b)2=________________________________
    (5)(mn+3)2=__________________________________
    (6)(a2b-0.2)2=_________________________________
    (7)(2xy2-3x2y)2=_______________________________
    (8)(2n3-3m3)2=________________________________
    〈六〉、學(xué)生自我評(píng)價(jià)
    [小結(jié)]通過(guò)本節(jié)課的學(xué)習(xí),你有什么收獲和感悟?
    本節(jié)課,我們自己通過(guò)計(jì)算、分析結(jié)果,總結(jié)出了完全平方公式。在知識(shí)探索的過(guò)程中,同學(xué)們積極思考,大膽探索,團(tuán)結(jié)協(xié)作共同取得了進(jìn)步。
    〈七〉[作業(yè)]p34隨堂練習(xí)p36習(xí)題
    七、課后反思
    本節(jié)課雖然算不上課本中的難點(diǎn),但在整式一章中是個(gè)重點(diǎn)。它是多項(xiàng)式乘法特殊形式下的一種簡(jiǎn)便運(yùn)算。學(xué)生需要熟練掌握公式兩種形式的使用方法,以提高運(yùn)算速度。授課過(guò)程中,應(yīng)注重讓學(xué)生總結(jié)公式的等號(hào)兩邊的特點(diǎn),讓學(xué)生用語(yǔ)言表達(dá)公式的內(nèi)容,讓學(xué)生說(shuō)明運(yùn)用公式過(guò)程中容易出現(xiàn)的問(wèn)題和特別注意的細(xì)節(jié)。然后再通過(guò)逐層深入的練習(xí),鞏固完全平方公式兩種形式的應(yīng)用。為完全平方公式第二節(jié)課的實(shí)際應(yīng)用和提高應(yīng)用做好充分的準(zhǔn)備
    人教版初三數(shù)學(xué)教案全冊(cè)篇四
    一、素質(zhì)教育目標(biāo)
    (一)知識(shí)教學(xué)點(diǎn)
    使學(xué)生知道當(dāng)直角三角形的銳角固定時(shí),它的對(duì)邊、鄰邊與斜邊的比值也都固定這一事實(shí).
    (二)能力訓(xùn)練點(diǎn)
    逐步培養(yǎng)學(xué)生會(huì)觀察、比較、分析、概括等邏輯思維能力.
    (三)德育滲透點(diǎn)
    引導(dǎo)學(xué)生探索、發(fā)現(xiàn),以培養(yǎng)學(xué)生獨(dú)立思考、勇于創(chuàng)新的精神和良好的學(xué)習(xí)習(xí)慣.
    二、教學(xué)重點(diǎn)、難點(diǎn)
    1.重點(diǎn):使學(xué)生知道當(dāng)銳角固定時(shí),它的對(duì)邊、鄰邊與斜邊的比值也是固定的這一事實(shí).
    2.難點(diǎn):學(xué)生很難想到對(duì)任意銳角,它的對(duì)邊、鄰邊與斜邊的比值也是固定的事實(shí),關(guān)鍵在于教師引導(dǎo)學(xué)生比較、分析,得出結(jié)論.
    三、教學(xué)步驟
    (一)明確目標(biāo)
    1.如圖6-1,長(zhǎng)5米的梯子架在高為3米的墻上,則a、b間距離為多少米?
    2.長(zhǎng)5米的梯子以?xún)A斜角∠cab為30°靠在墻上,則a、b間的距離為多少?
    3.若長(zhǎng)5米的梯子以?xún)A斜角40°架在墻上,則a、b間距離為多少?
    4.若長(zhǎng)5米的梯子靠在墻上,使a、b間距為2米,則傾斜角∠cab為多少度?
    前兩個(gè)問(wèn)題學(xué)生很容易回答.這兩個(gè)問(wèn)題的設(shè)計(jì)主要是引起學(xué)生的回憶,并使學(xué)生意識(shí)到,本章要用到這些知識(shí).但后兩個(gè)問(wèn)題的設(shè)計(jì)卻使學(xué)生感到疑惑,這對(duì)初三年級(jí)這些好奇、好勝的學(xué)生來(lái)說(shuō),起到激起學(xué)生的學(xué)習(xí)興趣的作用.同時(shí)使學(xué)生對(duì)本章所要學(xué)習(xí)的內(nèi)容的特點(diǎn)有一個(gè)初步的了解,有些問(wèn)題單靠勾股定理或含30°角的直角三角形和等腰直角三角形的知識(shí)是不能解決的,解決這類(lèi)問(wèn)題,關(guān)鍵在于找到一種新方法,求出一條邊或一個(gè)未知銳角,只要做到這一點(diǎn),有關(guān)直角三角形的其他未知邊角就可用學(xué)過(guò)的知識(shí)全部求出來(lái).
    通過(guò)四個(gè)例子引出課題.
    (二)整體感知
    1.請(qǐng)每一位同學(xué)拿出自己的三角板,分別測(cè)量并計(jì)算30°、45°、60°角的對(duì)邊、鄰邊與斜邊的比值.
    學(xué)生很快便會(huì)回答結(jié)果:無(wú)論三角尺大小如何,其比值是一個(gè)固定的值.程度較好的學(xué)生還會(huì)想到,以后在這些特殊直角三角形中,只要知道其中一邊長(zhǎng),就可求出其他未知邊的長(zhǎng).
    2.請(qǐng)同學(xué)畫(huà)一個(gè)含40°角的直角三角形,并測(cè)量、計(jì)算40°角的對(duì)邊、鄰邊與斜邊的比值,學(xué)生又高興地發(fā)現(xiàn),不論三角形大小如何,所求的比值是固定的.大部分學(xué)生可能會(huì)想到,當(dāng)銳角取其他固定值時(shí),其對(duì)邊、鄰邊與斜邊的比值也是固定的嗎?
    這樣做,在培養(yǎng)學(xué)生動(dòng)手能力的同時(shí),也使學(xué)生對(duì)本節(jié)課要研究的知識(shí)有了整體感知,喚起學(xué)生的求知欲,大膽地探索新知.
    (三)重點(diǎn)、難點(diǎn)的學(xué)習(xí)與目標(biāo)完成過(guò)程
    1.通過(guò)動(dòng)手實(shí)驗(yàn),學(xué)生會(huì)猜想到“無(wú)論直角三角形的銳角為何值,它的對(duì)邊、鄰邊與斜邊的比值總是固定不變的”.但是怎樣證明這個(gè)命題呢?學(xué)生這時(shí)的思維很活躍.對(duì)于這個(gè)問(wèn)題,部分學(xué)生可能能解決它.因此教師此時(shí)應(yīng)讓學(xué)生展開(kāi)討論,獨(dú)立完成.
    2.學(xué)生經(jīng)過(guò)研究,也許能解決這個(gè)問(wèn)題.若不能解決,教師可適當(dāng)引導(dǎo):
    若一組直角三角形有一個(gè)銳角相等,可以把其
    頂點(diǎn)a1,a2,a3重合在一起,記作a,并使直角邊ac1,ac2,ac3……落在同一條直線上,則斜邊ab1,ab2,ab3……落在另一條直線上.這樣同學(xué)們能解決這個(gè)問(wèn)題嗎?引導(dǎo)學(xué)生獨(dú)立證明:易知,b1c1∥b2c2∥b3c3……,∴△ab1c1∽△ab2c2∽△ab3c3∽……,∴
    形中,∠a的對(duì)邊、鄰邊與斜邊的比值,是一個(gè)固定值.
    通過(guò)引導(dǎo),使學(xué)生自己獨(dú)立掌握了重點(diǎn),達(dá)到知識(shí)教學(xué)目標(biāo),同時(shí)培養(yǎng)學(xué)生能力,進(jìn)行了德育滲透.
    而前面導(dǎo)課中動(dòng)手實(shí)驗(yàn)的設(shè)計(jì),實(shí)際上為突破難點(diǎn)而設(shè)計(jì).這一設(shè)計(jì)同時(shí)起到培養(yǎng)學(xué)生思維能力的作用.
    練習(xí)題為 作了孕伏同時(shí)使學(xué)生知道任意銳角的對(duì)邊與斜邊的比值都能求出來(lái).
    (四)總結(jié)與擴(kuò)展
    1.引導(dǎo)學(xué)生作知識(shí)總結(jié):本節(jié)課在復(fù)習(xí)勾股定理及含30°角直角三角形的性質(zhì)基礎(chǔ)上,通過(guò)動(dòng)手實(shí)驗(yàn)、證明,我們發(fā)現(xiàn),只要直角三角形的銳角固定,它的對(duì)邊、鄰邊與斜邊的比值也是固定的.
    教師可適當(dāng)補(bǔ)充:本節(jié)課經(jīng)過(guò)同學(xué)們自己動(dòng)手實(shí)驗(yàn),大膽猜測(cè)和積極思考,我們發(fā)現(xiàn)了一個(gè)新的結(jié)論,相信大家的邏輯思維能力又有所提高,希望大家發(fā)揚(yáng)這種創(chuàng)新精神,變被動(dòng)學(xué)知識(shí)為主動(dòng)發(fā)現(xiàn)問(wèn)題,培養(yǎng)自己的創(chuàng)新意識(shí).
    2.擴(kuò)展:當(dāng)銳角為30°時(shí),它的對(duì)邊與斜邊比值我們知道.今天我們又發(fā)現(xiàn),銳角任意時(shí),它的對(duì)邊與斜邊的比值也是固定的.如果知道這個(gè)比值,已知一邊求其他未知邊的問(wèn)題就迎刃而解了.看來(lái)這個(gè)比值很重要,下節(jié)課我們就著重研究這個(gè)“比值”,有興趣的同學(xué)可以提前預(yù)習(xí)一下.通過(guò)這種擴(kuò)展,不僅對(duì)正、余弦概念有了初步印象,同時(shí)又激發(fā)了學(xué)生的興趣.
    四、布置作業(yè)
    本節(jié)課內(nèi)容較少,而且是為正、余弦概念打基礎(chǔ)的,因此課后應(yīng)要求學(xué)生預(yù)習(xí)正余弦概念.
    五、板書(shū)設(shè)計(jì)
    人教版初三數(shù)學(xué)教案全冊(cè)篇五
    一、素質(zhì)教育目標(biāo)
    (一)知識(shí)教學(xué)點(diǎn)
    使學(xué)生了解一個(gè)銳角的正弦(余弦)值與它的余角的余弦(正弦)值之間的關(guān)系.
    (二)能力訓(xùn)練點(diǎn)
    逐步培養(yǎng)學(xué)生觀察、比較、分析、綜合、抽象、概括的邏輯思維能力.
    (三)德育滲透點(diǎn)
    培養(yǎng)學(xué)生獨(dú)立思考、勇于創(chuàng)新的精神.
    二、教學(xué)重點(diǎn)、難點(diǎn)
    1.重點(diǎn):使學(xué)生了解一個(gè)銳角的正弦(余弦)值與它的余角的余弦(正弦)值之間的關(guān)系并會(huì)應(yīng)用.
    2.難點(diǎn):一個(gè)銳角的正弦(余弦)與它的余角的余弦(正弦)之間的關(guān)系的應(yīng)用.
    三、教學(xué)步驟
    (一)明確目標(biāo)
    1.復(fù)習(xí)提問(wèn)
    (1)、什么是∠a的正弦、什么是∠a的余弦,結(jié)合圖形請(qǐng)學(xué)生回答.因?yàn)檎摇⒂嘞业母拍钍茄芯勘菊n內(nèi)容的知識(shí)基礎(chǔ),請(qǐng)中下學(xué)生回答,從中可以了解教學(xué)班還有多少人不清楚的,可以采取適當(dāng)?shù)难a(bǔ)救措施.
    (2)請(qǐng)同學(xué)們回憶30°、45°、60°角的正、余弦值(教師板書(shū)).
    (3)請(qǐng)同學(xué)們觀察,從中發(fā)現(xiàn)什么特征?學(xué)生一定會(huì)回答“sin30°=cos60°,sin45°=cos45°,sin60°=cos30°,這三個(gè)角的正弦值等于它們余角的余弦值”.
    2.導(dǎo)入新課
    根據(jù)這一特征,學(xué)生們可能會(huì)猜想“一個(gè)銳角的正弦(余弦)值等于它的余角的余弦(正弦)值.”這是否是真命題呢?引出課題.
    (二)、整體感知
    關(guān)于銳角的正弦(余弦)值與它的余角的余弦(正弦)值之間的關(guān)系,是通過(guò)30°、45°、60°角的正弦、余弦值之間的關(guān)系引入的,然后加以證明.引入這兩個(gè)關(guān)系式是為了便于查“正弦和余弦表”,關(guān)系式雖然用黑體字并加以文字語(yǔ)言的證明,但不標(biāo)明是定理,其證明也不要求學(xué)生理解,更不應(yīng)要求學(xué)生利用這兩個(gè)關(guān)系式去推證其他三角恒等式.在本章,這兩個(gè)關(guān)系式的用處僅僅限于查表和計(jì)算,而不是證明.
    (三)重點(diǎn)、難點(diǎn)的學(xué)習(xí)和目標(biāo)完成過(guò)程
    1.通過(guò)復(fù)習(xí)特殊角的三角函數(shù)值,引導(dǎo)學(xué)生觀察,并猜想“任一銳角的正弦(余弦)值等于它的余角的余弦(正弦)值嗎?”提出問(wèn)題,激發(fā)學(xué)生的學(xué)習(xí)熱情,使學(xué)生的思維積極活躍.
    2.這時(shí)少數(shù)反應(yīng)快的學(xué)生可能頭腦中已經(jīng)“畫(huà)”出了圖形,并有了思路,但對(duì)部分學(xué)生來(lái)說(shuō)仍思路凌亂.因此教師應(yīng)進(jìn)一步引導(dǎo):sina=cos(90°-a),cosa=sin(90°-a)(a是銳角)成立嗎?這時(shí),學(xué)生結(jié)合正、余弦的概念,完全可以自己解決,教師要給學(xué)生足夠的研究解決問(wèn)題的時(shí)間,以培養(yǎng)學(xué)生邏輯思維能力及獨(dú)立思考、勇于創(chuàng)新的精神.
    3.教師板書(shū):
    任意銳角的正弦值等于它的余角的余弦值;任意銳角的余弦值等于它的余角的正弦值.
    sina=cos(90°-a),cosa=sin(90°-a).
    4.在學(xué)習(xí)了正、余弦概念的基礎(chǔ)上,學(xué)生了解以上內(nèi)容并不困難,但是,由于學(xué)生初次接觸三角函數(shù),還不熟練,而定理又涉及余角、余函數(shù),使學(xué)生極易混淆.因此,定理的應(yīng)用對(duì)學(xué)生來(lái)說(shuō)是難點(diǎn)、在給出定理后,需加以鞏固.
    已知∠a和∠b都是銳角,
    (1)把cos(90°-a)寫(xiě)成∠a的正弦.
    (2)把sin(90°-a)寫(xiě)成∠a的余弦.
    這一練習(xí)只能起到鞏固定理的作用.為了運(yùn)用定理,教材安排了例3.
    (2)已知sin35°=0.5736,求cos55°;
    (3)已知cos47°6′=0.6807,求sin42°54′.
    (1)問(wèn)比較簡(jiǎn)單,對(duì)照定理,學(xué)生立即可以回答.(2)、(3)比(1)則更深一步,因?yàn)?1)明確指出∠b與∠a互余,(2)、(3)讓學(xué)生自己發(fā)現(xiàn)35°與55°的角,47°6′分42°54′的角互余,從而根據(jù)定理得出答案,因此(2)、(3)問(wèn)在課堂上應(yīng)該請(qǐng)基礎(chǔ)好一些的同學(xué)講清思維過(guò)程,便于全體學(xué)生掌握,在三個(gè)問(wèn)題處理完之后,將題目變形:
    (2)已知sin35°=0.5736,則cos______=0.5736.
    (3)cos47°6′=0.6807,則sin______=0.6807,以培養(yǎng)學(xué)生思維能力.
    為了配合例3的教學(xué),教材中配備了練習(xí)題2.
    (2)已知sin67°18′=0.9225,求cos22°42′;
    (3)已知cos4°24′=0.9971,求sin85°36′.
    學(xué)生獨(dú)立完成練習(xí)2,就說(shuō)明定理的教學(xué)較成功,學(xué)生基本會(huì)運(yùn)用.
    教材中3的設(shè)置,實(shí)際上是對(duì)前二節(jié)課內(nèi)容的綜合運(yùn)用,既考察學(xué)生正、余弦概念的掌握程度,同時(shí)又對(duì)本課知識(shí)加以鞏固練習(xí),因此例3的安排恰到好處.同時(shí),做例3也為下一節(jié)查正余弦表做了準(zhǔn)備.
    (四)小結(jié)與擴(kuò)展
    1.請(qǐng)學(xué)生做知識(shí)小結(jié),使學(xué)生對(duì)所學(xué)內(nèi)容進(jìn)行歸納總結(jié),將所學(xué)內(nèi)容變成自己知識(shí)的組成部分.
    2.本節(jié)課我們由特殊角的正弦(余弦)和它的余角的余弦(正弦)值間關(guān)系,以及正弦、余弦的概念得出的結(jié)論:任意一個(gè)銳角的正弦值等于它的余角的余弦值,任意一個(gè)銳角的余弦值等于它的余角的正弦值.
    四、布置作業(yè)