教案不僅可以幫助教師提高教學(xué)能力,也能夠提高學(xué)生的學(xué)習(xí)效果。教案的編寫需要注意語言的準(zhǔn)確性和表達(dá)的簡潔性,以方便教學(xué)實施和理解。優(yōu)秀的教案范文能夠啟發(fā)教師的創(chuàng)新思維,激發(fā)教師的教學(xué)熱情和責(zé)任心。
一元一次函數(shù)教案篇一
2.掌握等式的性質(zhì),理解掌握移項法則。
3.會用等式的性質(zhì)解一元一次昂成(數(shù)字系數(shù)),掌握解一元一次方程的基本方法。
5.初步學(xué)會用方程的思想思考問題和解決問題的一些基本方法,學(xué)會用數(shù)學(xué)的方法觀察、分析、歸納和總結(jié)現(xiàn)實情境中的實際問題。
重點。
難點重點:解方程、用方程解決實際問題。
難點:用方程解決實際問題。
教學(xué)流程。
師生活動時間復(fù)備標(biāo)注。
二、典例回顧。
(1).x=5(2).x2+3x=2(3).2x+3y=5。
判斷下列x值是否為方程3x-5=6x+4的解.
(1).x=3(2)x=3。
4.解決問題的基本步驟。
解:設(shè)先安排x人工作4小時。根據(jù)兩段工作量之和應(yīng)是總工作量,由此,列方程:
去分母,得4x+8(x+2)=40。
去括號,得4x+8x+16=40。
移項及合并,得12x=24。
系數(shù)化為1,得x=2。
答:應(yīng)先安排2名工人工作4小時.
注意:工作量=人均效率人數(shù)時間。
本題的關(guān)鍵是要人均效率與人數(shù)和時間之間的數(shù)量關(guān)系.
三、基礎(chǔ)訓(xùn)練:課本第113頁第1.2.3題.
四、綜合訓(xùn)練:課本113頁至114頁4.5.6.7.8。
五、達(dá)標(biāo)訓(xùn)練:3.7。
五、課堂小結(jié):收獲了哪些?還有哪些需要再學(xué)習(xí)?
學(xué)生作業(yè)。
課件出示問題明確知識要點。
學(xué)生練習(xí)基礎(chǔ)上,教師點撥。
一元一次函數(shù)教案篇二
(二).過程與方法。
通過對實例的分析,體會一元一次方程作為實際問題的數(shù)學(xué)模型的作用.
(三).情感態(tài)度與價值觀。
開展探究性學(xué)習(xí),發(fā)展學(xué)習(xí)能力.
二、重、難點與關(guān)鍵。
(一).重點:會列一元一次方程解決實際問題,并會合并同類項解一元一次方程.
(三).關(guān)鍵:抓住實際問題中的數(shù)量關(guān)系建立方程模型.
三、教學(xué)過程。
(一)、復(fù)習(xí)提問。
1.敘述等式的兩條性質(zhì).
2.解方程:4(x-)=2.
解法1:根據(jù)等式性質(zhì)2,兩邊同除以4,得:
x-=。
兩邊都加,得x=.
解法2:利用乘法分配律,去掉括號,得:
4x-=2。
兩邊同加,得4x=。
兩邊同除以4,得x=.
(二)、新授。
公元825年左右,中亞細(xì)亞數(shù)學(xué)家阿爾、花拉子米寫了一本代數(shù)書,重點論述怎樣解方程.這本書的拉丁文譯本取名為《對消與還原》.對消與還原是什么意思呢?讓我們先討論下面內(nèi)容,然后再回答這個問題.
分析:設(shè)前年這個學(xué)校購買了x臺計算機(jī),已知去年購買數(shù)量是前年的2倍,那么去年購買2x臺,又知今年購買數(shù)量是去年的2倍,則今年購買了22x(即4x)臺.
題目中的相等關(guān)系為:三年共購買計算機(jī)140臺,即。
前年購買量+去年購買量+今年購買量=140。
列方程:x+2x+4x=140。
如何解這個方程呢?
2x表示2x,4x表示4x,x表示1x.
根據(jù)分配律,x+2x+4x=(1+2+4)x=7x.
這樣就可以把含x的項合并為一項,合并時要注意x的系數(shù)是1,不是0.
下面的框圖表示了解這個方程的具體過程:
x+2x+4x=140。
合并。
7x=140。
系數(shù)化為1。
x=20。
由上可知,前年這個學(xué)校購買了20臺計算機(jī).
上面解方程中合并起了化簡作用,把含有未知數(shù)的項合并為一項,從而達(dá)到把方程轉(zhuǎn)化為ax=b的形式,其中a、b是常數(shù).
例:某班學(xué)生共60分,外出參加種樹活動,根據(jù)任何的不同,要分成三個小組且使甲、乙、丙三個小組人數(shù)之比是2:3:5,求各小組人數(shù).
分析:這里甲、乙、丙三個小組人數(shù)之比是2:3:5,就是說把總數(shù)60人分成10份,甲組人數(shù)占2份,乙組人數(shù)占3份,丙組人數(shù)占5份,如果知道每一份是多少,那么甲、乙、丙各組人數(shù)都可以求得,所以本題應(yīng)設(shè)每一份為x人.
問:本題中相等關(guān)系是什么?
答:甲組人數(shù)+乙組人數(shù)+丙組人數(shù)=60.
解:設(shè)每一份為x人,則甲組人數(shù)為2x人,乙組人數(shù)為3x人,丙組為5x人,列方程:
2x+3x+5x=60。
合并,得10x=60。
系數(shù)化為1,得x=6。
所以2x=12,3x=18,5x=30。
答:甲組12人,乙組18人,丙組30人.
請同學(xué)們檢驗一下,答案是否合理,即這三組人數(shù)的比是否是2:3:5,且這三組人數(shù)之和是否等于60.
(三)、鞏固練習(xí)。
1.課本第89頁練習(xí).
(1)x=3.
(2)可以先合并,也可以先把方程兩邊同乘以2.
具體解法如下:
解法1:合并,得(+)x=7。
即2x=7。
系數(shù)化為1,得x=。
解法2:兩邊同乘以2,得x+3x=14。
合并,得4x=14。
系數(shù)化為1,得x=。
(3)合并,得-2.5x=10。
系數(shù)化為1,得x=-4。
2.補(bǔ)充練習(xí).
(2)某學(xué)生讀一本書,第一天讀了全書的多2頁,第二天讀了全書的少1頁,還剩23頁沒讀,問全書共有多少頁?(設(shè)未知數(shù),列方程,不求解)。
解:(1)設(shè)每份為x個,則黑色皮塊有3x個,白色皮塊有5x個.
列方程3x+2x=32。
合并,得8x=32。
系數(shù)化為1,得x=4。
黑色皮塊為43=12(個),白色皮塊有54=20(個).
(2)設(shè)全書共有x頁,那么第一天讀了(x+2)頁,第二天讀了(x-1)頁.
本問題的相等關(guān)系是:第一天讀的`量+第二天讀的量+還剩23頁=全書頁數(shù).
列方程:x+2+x-1+23=x.
四、課堂小結(jié)。
初學(xué)用代數(shù)方法解應(yīng)用題,感到不習(xí)慣,但一定要克服困難,掌握這種方法,掌握列一元一次方程解決實際問題的一般步驟,其中找等量關(guān)系是關(guān)鍵也是難點,本節(jié)課的兩個問題的相等關(guān)系都是:總量=各部分量的和.這是一個基本的相等關(guān)系.
合并就是把類型相同的項系數(shù)相加合并為一項,也就是逆用乘法分配律,合并時,注意x或-x的系數(shù)分別是1,-1,而不是0.
五、作業(yè)布置。
1.課本第93頁習(xí)題3.2第1、3(1)、(2)、4、5題.
2.選用課時作業(yè)設(shè)計.
合并同類項習(xí)題課(第2課時)。
1.(1)3x+3-2x=7;(2)x+x=3;。
(3)5x-2-7x=8;(4)y-3-5y=;。
(5)-=5;(6)0.6x-x-3=0.
二、解答題.
3.甲、乙兩地相距460千米,a、b兩車分別從甲、乙兩地開出,a車每小時行駛60千米,b車每小時行駛48千米.
(1)兩車同時出發(fā),相向而行,出發(fā)多少小時兩車相遇?
4.甲、乙二人從a地去b地,甲步行每小時走4千米,乙騎車每小時比甲多走8千米,甲出發(fā)半小時后乙出發(fā),恰好二人同時到達(dá)b地,求a、b兩地之間的距離.
答案:。
二、2.705人,設(shè)育紅小學(xué)1995年學(xué)生人數(shù)為x人,列方程320=x-150.
3.(1)4小時,設(shè)出發(fā)后x小時相遇,列方程60x+48x=460.
(2)3小時,設(shè)b車開出后x小時兩車相遇,列方程60+60x+48x=460.
4.3千米,設(shè)a、b兩地間的距離為x千米,-=.
5.1分鐘,設(shè)經(jīng)過x分鐘兩人首次相遇,列方程550x-250x=400.
一元一次函數(shù)教案篇三
本節(jié)課安排在正比例函數(shù)的圖象與一次函數(shù)的概念之后。通過這一節(jié)課的學(xué)習(xí)使學(xué)生掌握一次函數(shù)圖象的畫法和一次函數(shù)的性質(zhì)。它既是正比例函數(shù)的圖象和性質(zhì)的拓展,又是今后繼續(xù)學(xué)習(xí)“用函數(shù)觀點看方程(組)與不等式”的基礎(chǔ),在本章中起著承上啟下的作用。本節(jié)教學(xué)內(nèi)容還是學(xué)生進(jìn)一步學(xué)習(xí)“數(shù)形結(jié)合”這一數(shù)學(xué)思想方法的很好素材。作為一種數(shù)學(xué)模型,一次函數(shù)在日常生活中也有著極其廣泛的應(yīng)用。
二、學(xué)情分析。
本節(jié)課主要是研究一次函數(shù)的圖象與性質(zhì),是在學(xué)習(xí)了正比例函數(shù)的.圖象與性質(zhì),并初步了解了如何研究一個具體函數(shù)的圖象與性質(zhì)的基礎(chǔ)上進(jìn)的。原有知識與經(jīng)驗對本節(jié)課的學(xué)習(xí)有著積極的促進(jìn)作用,在前后知識的比較中,學(xué)生進(jìn)一步理解知識,促進(jìn)認(rèn)知結(jié)構(gòu)的完善,發(fā)展、比較、抽象與概括能力,進(jìn)一步體驗研究函數(shù)的基本思路,而這些目標(biāo)的達(dá)成要求教學(xué)必須發(fā)揮學(xué)生的主體作用,在函數(shù)圖象及其性質(zhì)的探索活動中,應(yīng)給予學(xué)生足夠的活動、探究、交流、反思的時間與空間,不以老師的講演代替學(xué)生的探索。
(二)教學(xué)目標(biāo)。
基于以上的教材分析,結(jié)合新課程標(biāo)準(zhǔn)的新理念,確立如下教學(xué)目標(biāo):
知識技能:
1、理解直線y=kx+b與y=kx之間的位置關(guān)系;
2、會利用兩個合適的點畫出一次函數(shù)的圖象;
過程與方法:
2、通過一次函數(shù)的圖象總結(jié)函數(shù)的性質(zhì),體驗數(shù)形結(jié)合法的應(yīng)用,培養(yǎng)推理及抽象思維能力。
情感態(tài)度:
2、在探究一次函數(shù)的圖象和性質(zhì)的活動中,通過一系列富有探究性的問題,滲透與他人交流、合作的意識和探究精神。
(三)教學(xué)重點難點。
教學(xué)重點:一次函數(shù)的圖象和性質(zhì)。
教學(xué)難點:由一次函數(shù)的圖象歸納得出一次函數(shù)的性質(zhì)及對性質(zhì)的理解。
二、教法學(xué)法。
1、教學(xué)方法。
依據(jù)當(dāng)前素質(zhì)教育的要求:以人為本,以學(xué)生為主體,讓教最大限度的服務(wù)與學(xué)。因此我選用了以下教學(xué)方法:
1、自學(xué)體驗法――利用學(xué)生描點作圖經(jīng)歷體驗并發(fā)現(xiàn)問題,分析問題進(jìn)一步歸納總結(jié)。
目的:通過這種教學(xué)方式來激發(fā)學(xué)生學(xué)習(xí)的積極主動性,培養(yǎng)學(xué)生獨立思考能力和創(chuàng)新意識。
2、直觀教學(xué)法――利用多媒體現(xiàn)代教學(xué)手段。
目的:通過圖片和材料的展示來激發(fā)學(xué)生學(xué)習(xí)興趣,把抽象的知識直觀的展現(xiàn)在學(xué)生面前,逐步將他們的感性認(rèn)識引領(lǐng)到理性的思考。
2、學(xué)法指導(dǎo)。
做為一名合格的老師,不止局限于知識的傳授,更重要的是使學(xué)生學(xué)會如何去學(xué)。本著這樣的原則,課上指導(dǎo)學(xué)生采用以下學(xué)習(xí)方法。
1、應(yīng)用自主探究。培養(yǎng)學(xué)生獨立思考能力,閱讀能力和自主探究的學(xué)習(xí)習(xí)慣。
2、指導(dǎo)學(xué)生觀察圖象,分析材料。培養(yǎng)觀察總結(jié)能力。
將本文的word文檔下載到電腦,方便收藏和打印。
一元一次函數(shù)教案篇四
“函數(shù)及其圖象”這一章的重點是一次函數(shù)的概念、圖象和性質(zhì),一方面,在學(xué)生初次接觸函數(shù)的有關(guān)內(nèi)容時,一定要結(jié)合具體函數(shù)進(jìn)行學(xué)習(xí),因此,全章的主要內(nèi)容,是側(cè)重在具體函數(shù)的講述上的。另一方面,在大綱規(guī)定的幾種具體函數(shù)中,一次函數(shù)是最基本的,教科書對一次函數(shù)的討論也比較全面。通過一次函數(shù)的學(xué)習(xí),學(xué)生可以對函數(shù)的研究方法有一個初步的認(rèn)識與了解,從而能更好地把握學(xué)習(xí)二次函數(shù)、反比例函數(shù)的學(xué)習(xí)方法。教學(xué)完后,對新教材有了一些更深的認(rèn)識。
精心備課。
備課過程是一種艱苦的復(fù)雜的腦力勞動過程,知識的發(fā)展、教育對象的變化、教學(xué)效益要求的提高,使作為一種藝術(shù)創(chuàng)造和再創(chuàng)造的備課是沒有止境的,一種最佳教學(xué)方案的設(shè)計和選擇,往往是難以完全使人滿意的。
二:教學(xué)內(nèi)容不好處理。
“一次函數(shù)的性質(zhì)”中無b對函數(shù)的圖象的影響,但題中有,要補(bǔ)講。
(2)當(dāng)k0時,y隨x的增大而______,這時函數(shù)的圖象從左到右_____.
(3)當(dāng)b0時,這時函數(shù)的圖象與y軸的交點在:
(4)當(dāng)b0時,這時函數(shù)的圖象與y軸的交點在:
待定系數(shù)法的引入上用“彈簧的長度y(厘米)”來講的,太難,要先講書上的“做一做:“已知一次函數(shù)y=kx+b的圖象經(jīng)過點(-1,1)和點(1,-5),”
三:難度不好處理:
如我們在講一次函數(shù)的定義時(第一課時)補(bǔ)充了一個例題:已知函數(shù)y=當(dāng)m取什么值時,y是x的一次函數(shù)?當(dāng)m取什么值是,y是x的正比例函數(shù)?!?BR> 學(xué)生難以理解,我個人認(rèn)為太難,超出了學(xué)生的理解能力。反而對一個具體的一次函數(shù)y=-2x+3中k,b是多少強(qiáng)調(diào)的不多。
滿意之筆。
一.結(jié)合生活實例,充分調(diào)動學(xué)生學(xué)習(xí)的激情,恰當(dāng)?shù)倪^渡,點燃其求知的欲望。
在本節(jié)課的引入部分采用班級里的真人真事(運用校運動會的具體事例)“在此跑步過程中涉及到哪些量?”“假定每位選手各自都是勻速直線運動的,那速度、時間、路程之間有什么關(guān)系?”“路程是時間的一次函數(shù)嗎?”等過渡性的問句既復(fù)習(xí)回顧了上節(jié)課的知識又為一次函數(shù)圖像的概念引出作了鋪墊。
二.大膽對教材作大幅度調(diào)整、修改。
對知識內(nèi)容的完整性作了補(bǔ)充。
(附一次函數(shù)的圖象的知識要點:一次函數(shù)幾何形狀:一條直線;一次函數(shù)圖象的畫法;一次函數(shù)圖象與坐標(biāo)軸的交點坐標(biāo)。)教材對“一次函數(shù)圖象的畫法”闡釋得不太完整、詳盡。學(xué)習(xí)函數(shù)的圖象需要培養(yǎng)學(xué)生數(shù)形結(jié)合的思想,一次函數(shù)圖象又是所有函數(shù)圖象中最簡單的一種,是以后學(xué)習(xí)其他復(fù)雜函數(shù)的基礎(chǔ),所以整體全面地學(xué)習(xí)一次函數(shù)的圖象能為學(xué)生以后學(xué)習(xí)其他復(fù)雜函數(shù)提供思路樣本、節(jié)省學(xué)習(xí)時間。雖然在課后的習(xí)題與作業(yè)本中都有涉及到:當(dāng)一次函數(shù)的自變量限制在某一范圍時如何畫此一次函數(shù)的圖象,但在教材中似乎沒有涉及到此類問題,對于b班的學(xué)生需要教師對此類問題做相關(guān)示范解決。(1)求y1關(guān)于x的函數(shù)關(guān)系式及自變量x的取值范圍;(2)畫出上述函數(shù)的圖像。圖像還是一條直線嗎?此題為拓展知識點:當(dāng)一次函數(shù)的自變量限制在某一范圍時一次函數(shù)的圖象是一條射線或線段而特地設(shè)計的。至于如何快速地畫出射線或線段呢,讓學(xué)生討論后給出總結(jié):對于射線,取起點與另一個異于起點的任一點畫出射線;對于線段,取線段的兩個端點然后連接即可。
不足之處。
一、時間把握不準(zhǔn)。由于我在原教材的基礎(chǔ)上加寬了知識點的面,拓展了知識點的深度,個別環(huán)節(jié)還需要小組活動或?qū)W生個別上臺動手操作,而我又想將這所有的內(nèi)容在一節(jié)課內(nèi)完成,似乎太高估了自己和學(xué)生的能力。所以我想這么多內(nèi)容可以更宜分開兩節(jié)課來上。
二、部分內(nèi)容上處理出現(xiàn)失誤:初探索一次函數(shù)y=x的畫法時,我直接自己硬性規(guī)定先取這樣五個點:(-2,-2),(-1,-1),(0,0),(1,1),(2,2),而沒有先征求學(xué)生的意見,看看他們是怎么取的,也沒有解釋為什么要取這五個點(理由應(yīng)是:這五個點分布均勻,它們的坐標(biāo)較簡單,有代表性)。
在以后的教學(xué)工作中,我要再接再厲,以能更好的體現(xiàn)數(shù)學(xué)課堂教學(xué)的有效性。
一元一次函數(shù)教案篇五
3.使學(xué)生初步養(yǎng)成正確思考問題的良好習(xí)慣.。
教學(xué)重點和難點。
課堂教學(xué)過程設(shè)計。
一、從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問題。
為了回答上述這幾個問題,我們來看下面這個例題.。
例1某數(shù)的3倍減2等于某數(shù)與4的和,求某數(shù).。
(首先,用算術(shù)方法解,由學(xué)生回答,教師板書)。
解法1:(4+2)÷(3-1)=3.。
答:某數(shù)為3.。
(其次,用代數(shù)方法來解,教師引導(dǎo),學(xué)生口述完成)。
解法2:設(shè)某數(shù)為x,則有3x-2=x+4.。
解之,得x=3.。
答:某數(shù)為3.。
二、師生共同分析、研究一元一次方程解簡單應(yīng)用題的方法和步驟。
師生共同分析:
1.本題中給出的已知量和未知量各是什么?
2.已知量與未知量之間存在著怎樣的相等關(guān)系?(原先重量-運出重量=剩余重量)。
上述分析過程可列表如下:
解:設(shè)原先有x千克面粉,那么運出了15%x千克,由題意,得。
x-15%x=42500,
所以x=50000.。
答:原先有50000千克面粉.。
(還有,原先重量=運出重量+剩余重量;原先重量-剩余重量=運出重量)。
(2)例2的解方程過程較為簡捷,同學(xué)應(yīng)注意模仿.。
依據(jù)例2的分析與解答過程,首先請同學(xué)們思考列一元一次方程解應(yīng)用題的方法和步驟;然后,采取提問的方式,進(jìn)行反饋;最后,根據(jù)學(xué)生總結(jié)的狀況,教師總結(jié)如下:
(2)根據(jù)題意找出能夠表示應(yīng)用題全部含義的一個相等關(guān)系.(這是關(guān)鍵一步);
(4)求出所列方程的解;
(仿照例2的分析方法分析本題,如學(xué)生在某處感到困難,教師應(yīng)做適當(dāng)點撥.解答過程請一名學(xué)生板演,教師巡視,及時糾正學(xué)生在書寫本題時可能出現(xiàn)的各種錯誤.并嚴(yán)格規(guī)范書寫格式)。
解:設(shè)第一小組有x個學(xué)生,依題意,得。
3x+9=5x-(5-4),
解這個方程:2x=10,
所以x=5.。
其蘋果數(shù)為3×5+9=24.。
答:第一小組有5名同學(xué),共摘蘋果24個.。
學(xué)生板演后,引導(dǎo)學(xué)生探討此題是否可有其他解法,并列出方程.。
(設(shè)第一小組共摘了x個蘋果,則依題意,得)。
三、課堂練習(xí)。
3.某工廠女工人占全廠總?cè)藬?shù)的35%,男工比女工多252人,求全廠總?cè)藬?shù).。
四、師生共同小結(jié)。
首先,讓學(xué)生回答如下問題:
1.本節(jié)課學(xué)習(xí)了哪些資料?
3.在運用上述方法和步驟時應(yīng)注意什么?
依據(jù)學(xué)生的回答狀況,教師總結(jié)如下:
(2)以上步驟同學(xué)應(yīng)在理解的基礎(chǔ)上記憶.。
五、作業(yè)。
1.買3千克蘋果,付出10元,找回3角4分.問每千克蘋果多少錢?
2.用76厘米長的鐵絲做一個長方形的教具,要使寬是16厘米,那么長是多少厘米?
一元一次函數(shù)教案篇六
2、內(nèi)容解析:教材的地位和作用:本節(jié)課主要是在學(xué)生學(xué)習(xí)了函數(shù)圖象的基礎(chǔ)上,通過動手操作接受一次函數(shù)圖象是直線這一事實,在實踐中體會兩點法的簡便,向?qū)W生滲透數(shù)形結(jié)合的數(shù)學(xué)思想,以使學(xué)生借助直觀的圖形,生動形象的變化來發(fā)現(xiàn)兩個一次函數(shù)圖象在直角坐標(biāo)系中的位置關(guān)系。培養(yǎng)學(xué)生主動學(xué)習(xí)、主動探索、合作學(xué)習(xí)的能力。本節(jié)課為探索一次函數(shù)性質(zhì)作準(zhǔn)備。
1、教學(xué)目標(biāo)的確定。
教學(xué)目標(biāo)是教學(xué)的.出發(fā)點和歸宿。因此,我根據(jù)新課標(biāo)的知識、能力和德育目標(biāo)的要求,以學(xué)生的認(rèn)知點,心理特點和本課的特點來制定教學(xué)目標(biāo)。
知識目標(biāo)。
(1)能用兩點法畫出一次函數(shù)的圖象。
(2)結(jié)合圖象,理解直線y=kx+b(k、b是常數(shù),k0)常數(shù)k和b的取值對于直線的位置的影響。
能力目標(biāo)。
(1)通過操作、觀察,培養(yǎng)學(xué)生動手和歸納的能力。
(2)結(jié)合具體情境向?qū)W生滲透數(shù)形結(jié)合的數(shù)學(xué)思想。
情感目標(biāo)。
(1)通過動手操作,觀察探索一次函數(shù)的特征,體驗數(shù)學(xué)研究和發(fā)現(xiàn)的過程,逐步培養(yǎng)學(xué)生在教學(xué)活動中的主動探索的意識和合作交流的習(xí)慣。
(2)讓學(xué)生通過直觀感知、動手操作去經(jīng)歷、體會規(guī)律形成的過程。
2、教學(xué)重點、難點。
用兩點法畫出一次函數(shù)的圖象是研究一次函數(shù)的性質(zhì)的基礎(chǔ),是本節(jié)課的重點。直線y=kx+b(k、b是常數(shù),k0)常數(shù)k和b的取值對于直線的位置的影響,是本節(jié)課的難點。關(guān)鍵是通過學(xué)生的直觀感知、動手操作、合作交流歸納其規(guī)律。
1、由用描點法畫函數(shù)的圖象的認(rèn)識,學(xué)生能接受一次函數(shù)的圖象是直線,結(jié)合兩點確定一條直線,學(xué)生能畫出一次函數(shù)圖象。
2、根據(jù)學(xué)生抽象歸納能力較差,學(xué)習(xí)直線y=kx+b(k、b是常數(shù),k0)常數(shù)k和b的取值對于直線的位置的影響有難度。所以教學(xué)中應(yīng)盡可能多地讓學(xué)生動手操作,突出圖象變化特征的探索過程,自主探索出其規(guī)律。
3、抓住初中學(xué)生的心理特征,運用直觀生動的形象,引發(fā)學(xué)生的興趣,吸引他們的注意力;另一方面積極創(chuàng)造條件和機(jī)會,讓學(xué)生發(fā)表見解,發(fā)揮學(xué)生學(xué)習(xí)的主動性。
恰當(dāng)運用現(xiàn)代教育技術(shù)手段,采用自主探究合作交流式教學(xué),讓學(xué)生動手操作,主動去探索,小組合作交流。而互動式教學(xué)將顧及到全體學(xué)生,讓全體學(xué)生都參與,達(dá)到優(yōu)生得到培養(yǎng),后進(jìn)生也有所收獲的效果。
(一)、設(shè)疑,導(dǎo)入新課(2分鐘)。
通過前面的學(xué)習(xí)我們可以發(fā)現(xiàn),一次函數(shù)是一種特殊的函數(shù),那么一次函數(shù)的圖象是什么形狀呢?一次函數(shù)的圖象。(板書課題)。
一元一次函數(shù)教案篇七
本節(jié)課的教學(xué)設(shè)計中堅持以學(xué)生發(fā)展為本。通過豐富的情境,活躍的討論,將教材中提供的幾個與生活密切相關(guān)的實際問題,抽象出相等的數(shù)量關(guān)系,建立數(shù)學(xué)模型。啟發(fā)學(xué)生逐層深入,多方位、多角度地思考問題,加強(qiáng)知識的綜合運用,尊重個體差異,幫助學(xué)生在自主探索與合作交流的過程中獲得數(shù)學(xué)活動經(jīng)驗,提高靈活解決實際問題的能力。
教學(xué)內(nèi)容分析。
本節(jié)課是人民教育出版社的義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書《數(shù)學(xué)》七年級上第二章第四節(jié)。列一元一次方程解決生產(chǎn)生活中的一些實際問題,是初中階段應(yīng)用數(shù)學(xué)知識解決實際問題的開端,同時也是今后學(xué)習(xí)列其它方程或方程組解決實際問題的基礎(chǔ)。
教學(xué)對象分析。
學(xué)生在小學(xué)學(xué)習(xí)時就已接觸過有關(guān)實際問題中的盈虧問題和省錢問題,掌握了盈虧問題和省錢問題的基本關(guān)系,并會解決一些簡單問題,同時,在本章前階段的學(xué)習(xí)中學(xué)習(xí)了一元一次方程的解法及列一元一次方程解實際問題建模的思想,但由于學(xué)生的認(rèn)知起點和學(xué)習(xí)能力存在差異,部分學(xué)生對于抽象數(shù)學(xué)模型可能感到困難,因此,教學(xué)時要注意學(xué)生的學(xué)習(xí)傾向,挖掘積極因素,力求不同的學(xué)生獲得不同的發(fā)展。
知識與技能目標(biāo)。
進(jìn)一步掌握生活中實際問題的方程解法,能找出實際問題中已知數(shù)、未知數(shù)和全部的等量關(guān)系,列一元一次方程加以解決。
過程與方法目標(biāo)。
主動參與數(shù)學(xué)活動,通過問題的`對比體會數(shù)學(xué)建模思想,形成良好的思維習(xí)慣。
情感、態(tài)度和價值觀目標(biāo)。
經(jīng)歷從生活中發(fā)現(xiàn)數(shù)學(xué)和應(yīng)用數(shù)學(xué)解決實際問題的過程,樹立多種方法解決問題的創(chuàng)新意識,品嘗成功的喜悅,激發(fā)應(yīng)用數(shù)學(xué)的熱情。
教學(xué)重點:1.體驗用多種方法解決實際問題的過程。
教學(xué)難點:體會實際問題的生活情節(jié),將數(shù)量關(guān)系抽象概括成為方程模型。
教學(xué)關(guān)鍵:調(diào)動全體學(xué)生的積極性,讓學(xué)生參與實踐,在實踐中提問、交流、合作、探索,正確地列出方程,解決問題。
利用多媒體課件引入問題,讓學(xué)生在實際背景下發(fā)現(xiàn)和理解數(shù)學(xué)問題。
問題1:銷售中的盈虧:
分析:兩件衣服共賣了120(=60x2)元,是盈是虧要看這家商店買進(jìn)這兩件衣服時花了多少錢,如果進(jìn)價大于售價就虧損,反之就盈利。
小組討論:
問題2:用那種燈省錢。
分析:問題中有基本的等量關(guān)系。
費用=燈的售價+電費。
一元一次函數(shù)教案篇八
一次函數(shù)的圖像與性質(zhì)的口訣:
一次函數(shù)是直線,圖像經(jīng)過三象限;。
正比例函數(shù)更簡單,經(jīng)過原點一直線;。
兩個系數(shù)k與b,作用之大莫小看,
k是斜率定夾角,b與y軸來相見,
k為正來右上斜,x增減y增減;。
k為負(fù)來左下展,變化規(guī)律正相反;。
k的絕對值越大,線離橫軸就越遠(yuǎn)。
一元一次函數(shù)教案篇九
一次函數(shù)解析式的求法一般是采用待定系法,對于學(xué)生而言,如何理解這種方法是解決這一問題的關(guān)鍵。
為了解決這個問題,我舉了這樣一個例子:已知直線y=kx+b經(jīng)過點(1,2)和點(-2,3)試求這個函數(shù)關(guān)系式?學(xué)生們很容易想到列方程組解決這個問題,我卻提出了一個比較簡單的問題,為什么你要選擇列方程組解決這個問題,你的目的是什么?我教的那個班的學(xué)生沉默了好久,是啊,對于學(xué)生來說,他們習(xí)慣于如何做題,卻從不想為什么采用這種方法,這種方法的出發(fā)點是什么?經(jīng)過一段時間的思考,有的學(xué)生終于答出了這個問題:他們說這是為了確定k,b的值,只要k,b的值確定了,那么一次函數(shù)解析式就確定下來了。而實際他們回答的恰恰是待定系數(shù)法的精髓,學(xué)生們只有能理解到這一點才能領(lǐng)會到待定系數(shù)法的精髓。進(jìn)而我總結(jié),如果知道一次函數(shù)圖象上個點就能確定它的解析式。如上例是顯而易見的兩點。
接著我給出另一個例題:已知一次函數(shù)圖象過點(1,-2),且與直線y=3x+2交y軸于同一點,試求該函數(shù)的解析式。這個題一個點顯而易見,另一個點是隱含的,學(xué)生們開始找到一個明線,通過分析找到了另一個暗線,最終大家一致認(rèn)為兩點確定一條直線,想求一次函數(shù)的解析式,只要找到兩個點的坐標(biāo)就行。
最后我出了一個例題:一個一次函數(shù)的圖象,與直線y=2x+1的交點m的橫坐標(biāo)為2,與直線y=-x+2的交點n的縱坐標(biāo)為1,求這個一次函數(shù)的解析式。學(xué)生們發(fā)現(xiàn)沒有一條明線,全是暗線,但只要理解找兩個點求一次函數(shù)解析式,看似難的問題就會迎刃而解。如果學(xué)生能理解透這三道其實是一類題,他們就會利用待定系數(shù)法求一次函數(shù)解析式了。
一元一次函數(shù)教案篇十
一、學(xué)生情況分析及改進(jìn)提高措施:
學(xué)生們經(jīng)過兩年的學(xué)習(xí),已經(jīng)具備了初步的邏輯思維能力和簡單的抽象概括能力,養(yǎng)成了一些良好的學(xué)習(xí)習(xí)慣,掌握了一些科學(xué)的學(xué)習(xí)方法,學(xué)會了獨立思考和與人溝通、協(xié)商、合作、交流的能力,學(xué)會了探究問題,并能根據(jù)具體情況提出合理的問題,還能正確解決問題的能力。無論是理解問題的.能力,還是分析、解決問題的能力均有所提高,基礎(chǔ)知識和基本技能打得也比較扎實,對數(shù)學(xué)學(xué)習(xí)有著濃厚的興趣,樂于參與到學(xué)習(xí)活動中去,特別是對一些動手操作,合作學(xué)習(xí),實踐活動等學(xué)習(xí)內(nèi)容尤為感興趣,因此,在教學(xué)中應(yīng)多設(shè)計一些活動,引導(dǎo)學(xué)生進(jìn)行獨立思考與合作交流,幫助學(xué)生積累參加數(shù)學(xué)學(xué)習(xí)活動的經(jīng)驗。
在數(shù)學(xué)知識上已經(jīng)掌握了兩步計算式題和有余數(shù)的除法,還有統(tǒng)計知識,并學(xué)會了辨認(rèn)八個方位;掌握了萬以內(nèi)數(shù)的讀法、寫法和加、減法;還掌握了長度單位毫米、厘米、分米、米和千米的實際長度和簡單的換算以及實際測量,并能用以上這些相應(yīng)的知識解決實際生活中的問題??傊?,這些技能和知識點都為本學(xué)期進(jìn)一步學(xué)習(xí)新知識打下了堅實的基礎(chǔ),他們愛學(xué)數(shù)學(xué)的熱情,以及對數(shù)學(xué)的感悟能力會在本學(xué)期進(jìn)一步得到發(fā)揚光大,他們的情感、態(tài)度、價值觀會沿著良性軌道螺旋式上升。
具體提高措施是:
1.從學(xué)生的年齡特點出發(fā),多采用情境活動式教學(xué),培養(yǎng)學(xué)生的參與意識。兩班學(xué)生都能根據(jù)教師給出的情境獲取相關(guān)的數(shù)學(xué)信息,并能根據(jù)有效信息提出數(shù)學(xué)問題,能積極投入到探索問題的活動中去,絕大部分學(xué)生能夠在課堂上主動的研究問題,獲取知識。
2.在課堂教學(xué)中,多增添一些與學(xué)生生活相關(guān)的利于孩子理解的問題,讓學(xué)生在解決問題的過程中能夠聯(lián)系到實際,便于對問題的理解。結(jié)合學(xué)生的生活實際,將問題生活化,讓學(xué)生從生活中獲取到更多的解決問題的素材。
3.課后練習(xí)注重增添以學(xué)習(xí)內(nèi)容為主的相關(guān)實踐練習(xí),加強(qiáng)各學(xué)科之間的聯(lián)系,少一些呆板的練習(xí),提高練習(xí)的實踐性和趣味性。在上學(xué)期的教學(xué)中,我發(fā)現(xiàn)學(xué)生們比較喜歡做不同科目之間有聯(lián)系的綜合性作業(yè),例如我把數(shù)學(xué)與科學(xué)課相結(jié)合,讓他們種豆子,了解植物的生長,并做記錄,再將每天的記錄制作成統(tǒng)計圖,學(xué)生完成作業(yè)的積極性特別高。我為了讓學(xué)生了解長度單位,讓他們從成語詞典上收集有關(guān)長度單位的成語,通過對詞語的理解把握其表示的長度。
4.加強(qiáng)學(xué)校教育和家庭教育的聯(lián)系。關(guān)注學(xué)生的平時學(xué)習(xí)情況,與學(xué)生家長多溝通交流。
二、本冊教材分析。
本冊教材充分體現(xiàn)了新《課程標(biāo)準(zhǔn)》的理念,以學(xué)生的數(shù)學(xué)活動實踐為學(xué)習(xí)內(nèi)容,教材創(chuàng)設(shè)了生動有趣的情境,引導(dǎo)學(xué)生在解決現(xiàn)實問題的過程中獲得對數(shù)學(xué)知識的理解和體驗。教學(xué)內(nèi)容主要包括(1)乘法;(2)除法;(3)觀察物體;(4)千克、克、噸;(5)、周長;(6)年、月、日;(7)可能性;(8)共有五個社會實踐活動,還有兩個整理復(fù)習(xí),一個總復(fù)習(xí)。具體特點是:
1.在數(shù)與代數(shù)的學(xué)習(xí)中,重視動手操作與抽象概括相結(jié)合,體驗乘、除法意義,發(fā)展了學(xué)生的數(shù)感和符號感。
2.在空間和圖形學(xué)習(xí)中,從學(xué)生的生活經(jīng)驗出發(fā),注重通過操作活動發(fā)展空間觀念。
3.教材為教師留下了創(chuàng)造空間,可結(jié)合自身教學(xué)要求,生發(fā)新的教學(xué)設(shè)想,內(nèi)化自己的教學(xué)設(shè)計。
三、總體教學(xué)目標(biāo):
(一)、知識與技能。
1.在單元學(xué)習(xí)中,學(xué)生通過“數(shù)一數(shù)”、“分一分”等活動,經(jīng)歷從具體情境中抽象出乘法除法算式,體會乘法與除法的意義。
2.學(xué)平面圖形的周長,會進(jìn)行周長的計算。
(二)、實踐能力培養(yǎng)。
1.觀察物體,引導(dǎo)學(xué)生經(jīng)歷觀察的過程,體驗從不同的位置觀察,所看到的物體可能是不一樣的。
2.結(jié)合生活情境,感受并認(rèn)識質(zhì)量單位。
3.經(jīng)歷對生活中某些現(xiàn)象進(jìn)行推理、判斷的過程,能對生活中的某些現(xiàn)象按一定的方法進(jìn)行邏輯推理、判斷其結(jié)果。
(三)、情感與態(tài)度。
1、讓學(xué)生在觀察和操作的學(xué)習(xí)活動中,能夠感受到思考的條理性和合理性。
2、教師重視對學(xué)生數(shù)學(xué)學(xué)習(xí)過程的評價,讓他們在感受到樂趣之外,應(yīng)具備必要的學(xué)習(xí)自信心,養(yǎng)成良好的學(xué)習(xí)習(xí)慣。
教研專題:
創(chuàng)設(shè)課堂學(xué)習(xí)情境,有效培養(yǎng)創(chuàng)新意識。
個人專題:
在情境中培養(yǎng)學(xué)生的自主學(xué)習(xí)意識,提高課堂的有效性。
一元一次函數(shù)教案篇十一
本課的內(nèi)容是人教版八年級上冊第14章第2節(jié)第2課時,就是課本115到116頁的內(nèi)容。在許多方面與正比例函數(shù)的圖象和性質(zhì)有著緊密聯(lián)系,是本章中的重點。本節(jié)課安排在正比例函數(shù)的圖象與一次函數(shù)的概念之后。通過這一節(jié)課的學(xué)習(xí)使學(xué)生掌握一次函數(shù)圖象的畫法和一次函數(shù)的性質(zhì)。它既是正比例函數(shù)的圖象和性質(zhì)的拓展,又是今后繼續(xù)學(xué)習(xí)“用函數(shù)觀點看方程(組)與不等式”的基礎(chǔ),在本章中起著承上啟下的作用。本節(jié)教學(xué)內(nèi)容還是學(xué)生進(jìn)一步學(xué)習(xí)“數(shù)形結(jié)合”這一數(shù)學(xué)思想方法的很好素材。作為一種數(shù)學(xué)模型,一次函數(shù)在日常生活中也有著極其廣泛的應(yīng)用。
(二)說教學(xué)目標(biāo)。
基于以上的教材分析,結(jié)合新課程標(biāo)準(zhǔn)的新理念,確立如下教學(xué)目標(biāo):
知識技能:
1、理解直線y=kx+b與y=kx之間的位置關(guān)系;。
2、會利用兩個合適的點畫出一次函數(shù)的圖象;。
數(shù)學(xué)思考:
2、通過一次函數(shù)的圖象總結(jié)函數(shù)的性質(zhì),體驗數(shù)形結(jié)合法的應(yīng)用,培養(yǎng)推理及抽象思維能力。
情感態(tài)度:
2、在探究一次函數(shù)的圖象和性質(zhì)的活動中,通過一系列富有探究性的問題,滲透與他人交流、合作的意識和探究精神。
(三)說教學(xué)重點難點。
教學(xué)難點:由一次函數(shù)的圖象歸納得出一次函數(shù)的性質(zhì)及對性質(zhì)的理解。
一元一次函數(shù)教案篇十二
依據(jù)當(dāng)前素質(zhì)教育的要求:以人為本,以學(xué)生為主體,讓教最大限度的服務(wù)與學(xué)。因此我選用了以下教學(xué)方法:
1、自學(xué)體驗法——利用學(xué)生描點作圖經(jīng)歷體驗并發(fā)現(xiàn)問題,分析問題進(jìn)一步歸納總結(jié)。
目的:通過這種教學(xué)方式來激發(fā)學(xué)生學(xué)習(xí)的積極主動性,培養(yǎng)學(xué)生獨立思考能力和創(chuàng)新意識。
2、直觀教學(xué)法——利用多媒體現(xiàn)代教學(xué)手段。
目的:通過圖片和材料的展示來激發(fā)學(xué)生學(xué)習(xí)興趣,把抽象的知識直觀的展現(xiàn)在學(xué)生面前,逐步將他們的感性認(rèn)識引領(lǐng)到理性的思考。
2、學(xué)法指導(dǎo)。
做為一名合格的老師,不止局限于知識的傳授,更重要的是使學(xué)生學(xué)會如何去學(xué)。本著這樣的原則,課上指導(dǎo)學(xué)生采用以下學(xué)習(xí)方法。
1、應(yīng)用自主探究。培養(yǎng)學(xué)生獨立思考能力,閱讀能力和自主探究的學(xué)習(xí)習(xí)慣。
2、指導(dǎo)學(xué)生觀察圖象,分析材料。培養(yǎng)觀察總結(jié)能力。
一元一次函數(shù)教案篇十三
2、把已知條件(自變量與函數(shù)對應(yīng)值)代入解析式,得到關(guān)于待定系數(shù)的方程(組);。
3、解方程(組),求出待定系數(shù);。
4、將求得的待定系數(shù)的值代回所設(shè)的函數(shù)解析式,從而得到所求函數(shù)解析式。
例、已知:一次函數(shù)的圖象經(jīng)過點(2,--1)和點(1,-2).
(1)求此一次函數(shù)的解析式;(2)求此一次函數(shù)與x軸、y軸的交點坐標(biāo)。
分析:一般一次函數(shù)有兩個待定字母k、b.要求解析式,只須將兩個獨立條件代入,再解方程組即可.凡涉及求兩個函數(shù)圖象的交點坐標(biāo)時,一般方法是將兩個函數(shù)的解析式組成方程組,求出方程組的解就求出了交點坐標(biāo).
解:(1)設(shè)函數(shù)解析式為y=kx+b.
(2)當(dāng)y=0時x=3,當(dāng)x=0時y=-3??傻弥本€與x軸交點(3,0)、與y軸交點(0,-3)。
評析:用待定系數(shù)法求函數(shù)解析式,求直線的交點均與解方程(組)有關(guān),因此必須重視函數(shù)與方程之間的關(guān)系.
一元一次函數(shù)教案篇十四
一次函數(shù)和代數(shù)式以及方程有著密不可分的聯(lián)系。如一次函數(shù)和正比例函數(shù)仍然是函數(shù),同時,等號的兩邊又都是代數(shù)式。需要注意的是,與一般代數(shù)式有很大區(qū)別。首先,一次函數(shù)和正比例函數(shù)都只能存在兩個變量,而代數(shù)式可以是多個變量;其次,一次函數(shù)中的變量指數(shù)只能是1,而代數(shù)式中變量指數(shù)還可以是1以外的數(shù)。另外,一次函數(shù)解析式也可以理解為二元一次方程。
一元一次函數(shù)教案篇十五
1、學(xué)生通過旅游、選燈、用電、水費、用氣、電信等問題的方案設(shè)計,弄清各類問題中的等量關(guān)系,掌握用方程來解決一些生活中的實際問題的技巧.
2、通過一個開放式的空間,放手讓學(xué)生去探索,去發(fā)現(xiàn),培養(yǎng)學(xué)生分析問題和用方程去解決實際問題的能力.
3、讓學(xué)生在生動活潑的問題情境中感受數(shù)學(xué)的應(yīng)用價值,產(chǎn)生對數(shù)學(xué)的興趣,養(yǎng)成認(rèn)真傾聽他人發(fā)言的習(xí)慣,感受與同伴交流的樂趣。
把生活中的實際問題抽象出數(shù)學(xué)問題。
引導(dǎo)學(xué)生弄清題意,設(shè)計出各類問題的最佳方案。
(師生活動)設(shè)計理念。
提出問題問題:小江一家三口準(zhǔn)備國慶節(jié)外出旅游.現(xiàn)有兩家。
由學(xué)生完成選擇旅行社的方案。從學(xué)生比較感興趣的實際生活問題,引入新課,并由學(xué)生自己設(shè)計出選擇旅行社的方案,為新授哪種燈省錢埋下伏筆。
分析問題出示教科書94頁探究2:用哪種燈省錢?
師生共同探討完成下列問題:
1、上述問題中基本等量關(guān)系有哪些?
(費用=燈的售價+電費,電費=0.5×燈的功率(千。
瓦)×照明時間(時)。
2、列式表示兩種燈的費用各為多少?
(節(jié)能燈用t小時的費用(元)為:60+0.5×0-o.11t。
白熾燈用t小時的費用(元)為:3十0.06×0.5t)。
3、當(dāng)照明時間t取何值時,(1)白熾燈比節(jié)能燈省錢,
(2)節(jié)能燈比白熾燈省錢?(3)白熾燈與節(jié)能燈費用一樣?(精確到1小時)。
4、如果計劃照明3500小時,則需要購買兩個燈,試設(shè)計你認(rèn)為能省錢的選燈方案。
以課本例題中實際生活問題為素材,使學(xué)生感受數(shù)學(xué)來源于生活,激發(fā)學(xué)生學(xué)數(shù)學(xué)的興趣,師生共同參與合作完成問題中的探討的幾個問題,體現(xiàn)了以學(xué)生為主體,教師作為問題解決的組織者,引導(dǎo)者,合作者的新課程教育理念。
探索創(chuàng)新下面問題是學(xué)生課前調(diào)查到的與人們生活密切相關(guān)的實際問題,每一大組完成一個,分四個小組討論后設(shè)計出最佳方案。
10分鐘后,大組派代表交流發(fā)言.
1、電價問題。
據(jù)我們調(diào)查,我市居民生活用電價格為每天早晨7時到晚上23時每度0.47元,每天23時到第二天7時每度0.25元.請根據(jù)你家每月用電情況,設(shè)計出用電的最佳方案.
2、水費問題。
我市為鼓勵節(jié)約用水,對自來水的收費標(biāo)準(zhǔn)作如下規(guī)定:每月每戶用水不超過10噸部分按0.45元/噸收費,超過10噸而不超過20噸部分按0.8元/噸收費,超過20噸部分按0.50元/噸收費,某月甲戶比乙戶多交水費3.75元,已知乙戶交水費3.15元.
問:(1)甲、乙兩戶該月各用水多少噸?(自來水按整噸收費)。
(2)根據(jù)你家用水情況,設(shè)計出最佳用水方案.
3、用氣問題。
某市按下列規(guī)定收取每月的煤氣費:用煤氣如果不超過60立方米,按每立方米o(hù).8元收費;如果超過60立方米,超過部分按每立方米1.2元收費.怎樣用氣最節(jié)約?請設(shè)計出方案來.
4、電信支費。
隨著電信事業(yè)的發(fā)展,各式各樣的電信業(yè)務(wù)不斷推出,請你通過市場調(diào)查,為你家設(shè)計出一種通訊方案.
(1)兩地間打長途電話所付電費有如下規(guī)定:若通話在3分鐘以內(nèi)都付2.4元.超過3分鐘以后,每分鐘付1元.
根據(jù)上述資料,(1)你認(rèn)為一個月通話多少分鐘,兩種移動通訊費用相同?(2)某人估計一個月內(nèi)通話300分鐘,應(yīng)選擇哪種移動通訊或用長途電話合算些?提供給學(xué)生一個開放的空間,放手讓學(xué)生去探索、去發(fā)揮,通過學(xué)生合作交流來設(shè)計最佳方案,培養(yǎng)學(xué)生用數(shù)學(xué)的意識和創(chuàng)新意識。
課堂小結(jié)可用教師對各小組交流的方案進(jìn)行簡單的評價作為小結(jié)。
布置作業(yè)1、必做題:課本第98頁習(xí)題2.4第5、7題。
2、選做題:
分層次布置作業(yè)。
本課教育評注(課堂設(shè)計理念,實際教學(xué)效果及改進(jìn)設(shè)想)。
本課以生活中的實際問題引入,以學(xué)生為主體,師生共同合作參與完成例中設(shè)計的。
幾個問題,教師在學(xué)生接受新知識的過程中,起到了一個組織者、合作者、引導(dǎo)者的角色.學(xué)生的學(xué)習(xí)始終是主動的.通過學(xué)生課前的社會調(diào)查,對生活中的一些方案以開放形式設(shè)計問題,學(xué)生通過小組合作交流,設(shè)計出不同的方案,讓學(xué)生在生動活潑的交流情境中感受到數(shù)學(xué)的應(yīng)用價值,產(chǎn)生對數(shù)學(xué)的興趣.同時養(yǎng)成認(rèn)真傾聽他人發(fā)言的習(xí)慣,感受與同伴交流想法的樂趣.通過用電、用水最佳方案的設(shè)計,培養(yǎng)學(xué)生節(jié)約用電、用水的意識.
一元一次函數(shù)教案篇十六
教學(xué)設(shè)計思想:
本節(jié)主要學(xué)習(xí)了平行四邊形的幾種判定方法,以及平行四邊形性質(zhì)、判定的應(yīng)用——三角形的中位線定理。通過問題情境引入平行四邊形判定的研究,首先通過直觀猜測判定的方法,再次通過幾何證明來證明它的正確性。充分發(fā)揮學(xué)生的主觀能動性。
教學(xué)目標(biāo)。
知識與技能:
1.總結(jié)出平行四邊形的三種判定方法;。
2.應(yīng)用平行四邊形的判定解決實際問題;。
3.應(yīng)用平行四邊形的性質(zhì)與判定得出三角形中位線定理;。
4.總結(jié)三角形與平行四邊形的相互轉(zhuǎn)化,學(xué)會基本的添輔助線法。
過程與方法:
1.經(jīng)歷平行四邊形判別條件的探索過程,逐步掌握說理的基本方法。
2.經(jīng)歷探究三角形中位線定理的過程,體會轉(zhuǎn)化思想在數(shù)學(xué)中的重要性。
情感態(tài)度價值觀:
1.在探究活動中,發(fā)展合情推理意識,養(yǎng)成主動探究的習(xí)慣;。
2.通過探索式證明法開拓思路,發(fā)展思維能力;。
3.在解決平行四邊形問題的過程中,不斷滲透轉(zhuǎn)化思想。
教學(xué)重難點。
重點:1.平行四邊形的判別條件;2.應(yīng)用平行四邊形的性質(zhì)和判定得出三角形中位線定理。
難點:1.靈活應(yīng)用平行四邊形的判別條件;2.合理添加輔助線;3.三角形與平行四邊形之間的合理轉(zhuǎn)化。
教學(xué)方法。
小組討論、合作探究。
課時安排。
3課時。
教學(xué)媒體。
課件、
教學(xué)過程。
第一課時。
(一)引入。
一元一次函數(shù)教案篇一
2.掌握等式的性質(zhì),理解掌握移項法則。
3.會用等式的性質(zhì)解一元一次昂成(數(shù)字系數(shù)),掌握解一元一次方程的基本方法。
5.初步學(xué)會用方程的思想思考問題和解決問題的一些基本方法,學(xué)會用數(shù)學(xué)的方法觀察、分析、歸納和總結(jié)現(xiàn)實情境中的實際問題。
重點。
難點重點:解方程、用方程解決實際問題。
難點:用方程解決實際問題。
教學(xué)流程。
師生活動時間復(fù)備標(biāo)注。
二、典例回顧。
(1).x=5(2).x2+3x=2(3).2x+3y=5。
判斷下列x值是否為方程3x-5=6x+4的解.
(1).x=3(2)x=3。
4.解決問題的基本步驟。
解:設(shè)先安排x人工作4小時。根據(jù)兩段工作量之和應(yīng)是總工作量,由此,列方程:
去分母,得4x+8(x+2)=40。
去括號,得4x+8x+16=40。
移項及合并,得12x=24。
系數(shù)化為1,得x=2。
答:應(yīng)先安排2名工人工作4小時.
注意:工作量=人均效率人數(shù)時間。
本題的關(guān)鍵是要人均效率與人數(shù)和時間之間的數(shù)量關(guān)系.
三、基礎(chǔ)訓(xùn)練:課本第113頁第1.2.3題.
四、綜合訓(xùn)練:課本113頁至114頁4.5.6.7.8。
五、達(dá)標(biāo)訓(xùn)練:3.7。
五、課堂小結(jié):收獲了哪些?還有哪些需要再學(xué)習(xí)?
學(xué)生作業(yè)。
課件出示問題明確知識要點。
學(xué)生練習(xí)基礎(chǔ)上,教師點撥。
一元一次函數(shù)教案篇二
(二).過程與方法。
通過對實例的分析,體會一元一次方程作為實際問題的數(shù)學(xué)模型的作用.
(三).情感態(tài)度與價值觀。
開展探究性學(xué)習(xí),發(fā)展學(xué)習(xí)能力.
二、重、難點與關(guān)鍵。
(一).重點:會列一元一次方程解決實際問題,并會合并同類項解一元一次方程.
(三).關(guān)鍵:抓住實際問題中的數(shù)量關(guān)系建立方程模型.
三、教學(xué)過程。
(一)、復(fù)習(xí)提問。
1.敘述等式的兩條性質(zhì).
2.解方程:4(x-)=2.
解法1:根據(jù)等式性質(zhì)2,兩邊同除以4,得:
x-=。
兩邊都加,得x=.
解法2:利用乘法分配律,去掉括號,得:
4x-=2。
兩邊同加,得4x=。
兩邊同除以4,得x=.
(二)、新授。
公元825年左右,中亞細(xì)亞數(shù)學(xué)家阿爾、花拉子米寫了一本代數(shù)書,重點論述怎樣解方程.這本書的拉丁文譯本取名為《對消與還原》.對消與還原是什么意思呢?讓我們先討論下面內(nèi)容,然后再回答這個問題.
分析:設(shè)前年這個學(xué)校購買了x臺計算機(jī),已知去年購買數(shù)量是前年的2倍,那么去年購買2x臺,又知今年購買數(shù)量是去年的2倍,則今年購買了22x(即4x)臺.
題目中的相等關(guān)系為:三年共購買計算機(jī)140臺,即。
前年購買量+去年購買量+今年購買量=140。
列方程:x+2x+4x=140。
如何解這個方程呢?
2x表示2x,4x表示4x,x表示1x.
根據(jù)分配律,x+2x+4x=(1+2+4)x=7x.
這樣就可以把含x的項合并為一項,合并時要注意x的系數(shù)是1,不是0.
下面的框圖表示了解這個方程的具體過程:
x+2x+4x=140。
合并。
7x=140。
系數(shù)化為1。
x=20。
由上可知,前年這個學(xué)校購買了20臺計算機(jī).
上面解方程中合并起了化簡作用,把含有未知數(shù)的項合并為一項,從而達(dá)到把方程轉(zhuǎn)化為ax=b的形式,其中a、b是常數(shù).
例:某班學(xué)生共60分,外出參加種樹活動,根據(jù)任何的不同,要分成三個小組且使甲、乙、丙三個小組人數(shù)之比是2:3:5,求各小組人數(shù).
分析:這里甲、乙、丙三個小組人數(shù)之比是2:3:5,就是說把總數(shù)60人分成10份,甲組人數(shù)占2份,乙組人數(shù)占3份,丙組人數(shù)占5份,如果知道每一份是多少,那么甲、乙、丙各組人數(shù)都可以求得,所以本題應(yīng)設(shè)每一份為x人.
問:本題中相等關(guān)系是什么?
答:甲組人數(shù)+乙組人數(shù)+丙組人數(shù)=60.
解:設(shè)每一份為x人,則甲組人數(shù)為2x人,乙組人數(shù)為3x人,丙組為5x人,列方程:
2x+3x+5x=60。
合并,得10x=60。
系數(shù)化為1,得x=6。
所以2x=12,3x=18,5x=30。
答:甲組12人,乙組18人,丙組30人.
請同學(xué)們檢驗一下,答案是否合理,即這三組人數(shù)的比是否是2:3:5,且這三組人數(shù)之和是否等于60.
(三)、鞏固練習(xí)。
1.課本第89頁練習(xí).
(1)x=3.
(2)可以先合并,也可以先把方程兩邊同乘以2.
具體解法如下:
解法1:合并,得(+)x=7。
即2x=7。
系數(shù)化為1,得x=。
解法2:兩邊同乘以2,得x+3x=14。
合并,得4x=14。
系數(shù)化為1,得x=。
(3)合并,得-2.5x=10。
系數(shù)化為1,得x=-4。
2.補(bǔ)充練習(xí).
(2)某學(xué)生讀一本書,第一天讀了全書的多2頁,第二天讀了全書的少1頁,還剩23頁沒讀,問全書共有多少頁?(設(shè)未知數(shù),列方程,不求解)。
解:(1)設(shè)每份為x個,則黑色皮塊有3x個,白色皮塊有5x個.
列方程3x+2x=32。
合并,得8x=32。
系數(shù)化為1,得x=4。
黑色皮塊為43=12(個),白色皮塊有54=20(個).
(2)設(shè)全書共有x頁,那么第一天讀了(x+2)頁,第二天讀了(x-1)頁.
本問題的相等關(guān)系是:第一天讀的`量+第二天讀的量+還剩23頁=全書頁數(shù).
列方程:x+2+x-1+23=x.
四、課堂小結(jié)。
初學(xué)用代數(shù)方法解應(yīng)用題,感到不習(xí)慣,但一定要克服困難,掌握這種方法,掌握列一元一次方程解決實際問題的一般步驟,其中找等量關(guān)系是關(guān)鍵也是難點,本節(jié)課的兩個問題的相等關(guān)系都是:總量=各部分量的和.這是一個基本的相等關(guān)系.
合并就是把類型相同的項系數(shù)相加合并為一項,也就是逆用乘法分配律,合并時,注意x或-x的系數(shù)分別是1,-1,而不是0.
五、作業(yè)布置。
1.課本第93頁習(xí)題3.2第1、3(1)、(2)、4、5題.
2.選用課時作業(yè)設(shè)計.
合并同類項習(xí)題課(第2課時)。
1.(1)3x+3-2x=7;(2)x+x=3;。
(3)5x-2-7x=8;(4)y-3-5y=;。
(5)-=5;(6)0.6x-x-3=0.
二、解答題.
3.甲、乙兩地相距460千米,a、b兩車分別從甲、乙兩地開出,a車每小時行駛60千米,b車每小時行駛48千米.
(1)兩車同時出發(fā),相向而行,出發(fā)多少小時兩車相遇?
4.甲、乙二人從a地去b地,甲步行每小時走4千米,乙騎車每小時比甲多走8千米,甲出發(fā)半小時后乙出發(fā),恰好二人同時到達(dá)b地,求a、b兩地之間的距離.
答案:。
二、2.705人,設(shè)育紅小學(xué)1995年學(xué)生人數(shù)為x人,列方程320=x-150.
3.(1)4小時,設(shè)出發(fā)后x小時相遇,列方程60x+48x=460.
(2)3小時,設(shè)b車開出后x小時兩車相遇,列方程60+60x+48x=460.
4.3千米,設(shè)a、b兩地間的距離為x千米,-=.
5.1分鐘,設(shè)經(jīng)過x分鐘兩人首次相遇,列方程550x-250x=400.
一元一次函數(shù)教案篇三
本節(jié)課安排在正比例函數(shù)的圖象與一次函數(shù)的概念之后。通過這一節(jié)課的學(xué)習(xí)使學(xué)生掌握一次函數(shù)圖象的畫法和一次函數(shù)的性質(zhì)。它既是正比例函數(shù)的圖象和性質(zhì)的拓展,又是今后繼續(xù)學(xué)習(xí)“用函數(shù)觀點看方程(組)與不等式”的基礎(chǔ),在本章中起著承上啟下的作用。本節(jié)教學(xué)內(nèi)容還是學(xué)生進(jìn)一步學(xué)習(xí)“數(shù)形結(jié)合”這一數(shù)學(xué)思想方法的很好素材。作為一種數(shù)學(xué)模型,一次函數(shù)在日常生活中也有著極其廣泛的應(yīng)用。
二、學(xué)情分析。
本節(jié)課主要是研究一次函數(shù)的圖象與性質(zhì),是在學(xué)習(xí)了正比例函數(shù)的.圖象與性質(zhì),并初步了解了如何研究一個具體函數(shù)的圖象與性質(zhì)的基礎(chǔ)上進(jìn)的。原有知識與經(jīng)驗對本節(jié)課的學(xué)習(xí)有著積極的促進(jìn)作用,在前后知識的比較中,學(xué)生進(jìn)一步理解知識,促進(jìn)認(rèn)知結(jié)構(gòu)的完善,發(fā)展、比較、抽象與概括能力,進(jìn)一步體驗研究函數(shù)的基本思路,而這些目標(biāo)的達(dá)成要求教學(xué)必須發(fā)揮學(xué)生的主體作用,在函數(shù)圖象及其性質(zhì)的探索活動中,應(yīng)給予學(xué)生足夠的活動、探究、交流、反思的時間與空間,不以老師的講演代替學(xué)生的探索。
(二)教學(xué)目標(biāo)。
基于以上的教材分析,結(jié)合新課程標(biāo)準(zhǔn)的新理念,確立如下教學(xué)目標(biāo):
知識技能:
1、理解直線y=kx+b與y=kx之間的位置關(guān)系;
2、會利用兩個合適的點畫出一次函數(shù)的圖象;
過程與方法:
2、通過一次函數(shù)的圖象總結(jié)函數(shù)的性質(zhì),體驗數(shù)形結(jié)合法的應(yīng)用,培養(yǎng)推理及抽象思維能力。
情感態(tài)度:
2、在探究一次函數(shù)的圖象和性質(zhì)的活動中,通過一系列富有探究性的問題,滲透與他人交流、合作的意識和探究精神。
(三)教學(xué)重點難點。
教學(xué)重點:一次函數(shù)的圖象和性質(zhì)。
教學(xué)難點:由一次函數(shù)的圖象歸納得出一次函數(shù)的性質(zhì)及對性質(zhì)的理解。
二、教法學(xué)法。
1、教學(xué)方法。
依據(jù)當(dāng)前素質(zhì)教育的要求:以人為本,以學(xué)生為主體,讓教最大限度的服務(wù)與學(xué)。因此我選用了以下教學(xué)方法:
1、自學(xué)體驗法――利用學(xué)生描點作圖經(jīng)歷體驗并發(fā)現(xiàn)問題,分析問題進(jìn)一步歸納總結(jié)。
目的:通過這種教學(xué)方式來激發(fā)學(xué)生學(xué)習(xí)的積極主動性,培養(yǎng)學(xué)生獨立思考能力和創(chuàng)新意識。
2、直觀教學(xué)法――利用多媒體現(xiàn)代教學(xué)手段。
目的:通過圖片和材料的展示來激發(fā)學(xué)生學(xué)習(xí)興趣,把抽象的知識直觀的展現(xiàn)在學(xué)生面前,逐步將他們的感性認(rèn)識引領(lǐng)到理性的思考。
2、學(xué)法指導(dǎo)。
做為一名合格的老師,不止局限于知識的傳授,更重要的是使學(xué)生學(xué)會如何去學(xué)。本著這樣的原則,課上指導(dǎo)學(xué)生采用以下學(xué)習(xí)方法。
1、應(yīng)用自主探究。培養(yǎng)學(xué)生獨立思考能力,閱讀能力和自主探究的學(xué)習(xí)習(xí)慣。
2、指導(dǎo)學(xué)生觀察圖象,分析材料。培養(yǎng)觀察總結(jié)能力。
將本文的word文檔下載到電腦,方便收藏和打印。
一元一次函數(shù)教案篇四
“函數(shù)及其圖象”這一章的重點是一次函數(shù)的概念、圖象和性質(zhì),一方面,在學(xué)生初次接觸函數(shù)的有關(guān)內(nèi)容時,一定要結(jié)合具體函數(shù)進(jìn)行學(xué)習(xí),因此,全章的主要內(nèi)容,是側(cè)重在具體函數(shù)的講述上的。另一方面,在大綱規(guī)定的幾種具體函數(shù)中,一次函數(shù)是最基本的,教科書對一次函數(shù)的討論也比較全面。通過一次函數(shù)的學(xué)習(xí),學(xué)生可以對函數(shù)的研究方法有一個初步的認(rèn)識與了解,從而能更好地把握學(xué)習(xí)二次函數(shù)、反比例函數(shù)的學(xué)習(xí)方法。教學(xué)完后,對新教材有了一些更深的認(rèn)識。
精心備課。
備課過程是一種艱苦的復(fù)雜的腦力勞動過程,知識的發(fā)展、教育對象的變化、教學(xué)效益要求的提高,使作為一種藝術(shù)創(chuàng)造和再創(chuàng)造的備課是沒有止境的,一種最佳教學(xué)方案的設(shè)計和選擇,往往是難以完全使人滿意的。
二:教學(xué)內(nèi)容不好處理。
“一次函數(shù)的性質(zhì)”中無b對函數(shù)的圖象的影響,但題中有,要補(bǔ)講。
(2)當(dāng)k0時,y隨x的增大而______,這時函數(shù)的圖象從左到右_____.
(3)當(dāng)b0時,這時函數(shù)的圖象與y軸的交點在:
(4)當(dāng)b0時,這時函數(shù)的圖象與y軸的交點在:
待定系數(shù)法的引入上用“彈簧的長度y(厘米)”來講的,太難,要先講書上的“做一做:“已知一次函數(shù)y=kx+b的圖象經(jīng)過點(-1,1)和點(1,-5),”
三:難度不好處理:
如我們在講一次函數(shù)的定義時(第一課時)補(bǔ)充了一個例題:已知函數(shù)y=當(dāng)m取什么值時,y是x的一次函數(shù)?當(dāng)m取什么值是,y是x的正比例函數(shù)?!?BR> 學(xué)生難以理解,我個人認(rèn)為太難,超出了學(xué)生的理解能力。反而對一個具體的一次函數(shù)y=-2x+3中k,b是多少強(qiáng)調(diào)的不多。
滿意之筆。
一.結(jié)合生活實例,充分調(diào)動學(xué)生學(xué)習(xí)的激情,恰當(dāng)?shù)倪^渡,點燃其求知的欲望。
在本節(jié)課的引入部分采用班級里的真人真事(運用校運動會的具體事例)“在此跑步過程中涉及到哪些量?”“假定每位選手各自都是勻速直線運動的,那速度、時間、路程之間有什么關(guān)系?”“路程是時間的一次函數(shù)嗎?”等過渡性的問句既復(fù)習(xí)回顧了上節(jié)課的知識又為一次函數(shù)圖像的概念引出作了鋪墊。
二.大膽對教材作大幅度調(diào)整、修改。
對知識內(nèi)容的完整性作了補(bǔ)充。
(附一次函數(shù)的圖象的知識要點:一次函數(shù)幾何形狀:一條直線;一次函數(shù)圖象的畫法;一次函數(shù)圖象與坐標(biāo)軸的交點坐標(biāo)。)教材對“一次函數(shù)圖象的畫法”闡釋得不太完整、詳盡。學(xué)習(xí)函數(shù)的圖象需要培養(yǎng)學(xué)生數(shù)形結(jié)合的思想,一次函數(shù)圖象又是所有函數(shù)圖象中最簡單的一種,是以后學(xué)習(xí)其他復(fù)雜函數(shù)的基礎(chǔ),所以整體全面地學(xué)習(xí)一次函數(shù)的圖象能為學(xué)生以后學(xué)習(xí)其他復(fù)雜函數(shù)提供思路樣本、節(jié)省學(xué)習(xí)時間。雖然在課后的習(xí)題與作業(yè)本中都有涉及到:當(dāng)一次函數(shù)的自變量限制在某一范圍時如何畫此一次函數(shù)的圖象,但在教材中似乎沒有涉及到此類問題,對于b班的學(xué)生需要教師對此類問題做相關(guān)示范解決。(1)求y1關(guān)于x的函數(shù)關(guān)系式及自變量x的取值范圍;(2)畫出上述函數(shù)的圖像。圖像還是一條直線嗎?此題為拓展知識點:當(dāng)一次函數(shù)的自變量限制在某一范圍時一次函數(shù)的圖象是一條射線或線段而特地設(shè)計的。至于如何快速地畫出射線或線段呢,讓學(xué)生討論后給出總結(jié):對于射線,取起點與另一個異于起點的任一點畫出射線;對于線段,取線段的兩個端點然后連接即可。
不足之處。
一、時間把握不準(zhǔn)。由于我在原教材的基礎(chǔ)上加寬了知識點的面,拓展了知識點的深度,個別環(huán)節(jié)還需要小組活動或?qū)W生個別上臺動手操作,而我又想將這所有的內(nèi)容在一節(jié)課內(nèi)完成,似乎太高估了自己和學(xué)生的能力。所以我想這么多內(nèi)容可以更宜分開兩節(jié)課來上。
二、部分內(nèi)容上處理出現(xiàn)失誤:初探索一次函數(shù)y=x的畫法時,我直接自己硬性規(guī)定先取這樣五個點:(-2,-2),(-1,-1),(0,0),(1,1),(2,2),而沒有先征求學(xué)生的意見,看看他們是怎么取的,也沒有解釋為什么要取這五個點(理由應(yīng)是:這五個點分布均勻,它們的坐標(biāo)較簡單,有代表性)。
在以后的教學(xué)工作中,我要再接再厲,以能更好的體現(xiàn)數(shù)學(xué)課堂教學(xué)的有效性。
一元一次函數(shù)教案篇五
3.使學(xué)生初步養(yǎng)成正確思考問題的良好習(xí)慣.。
教學(xué)重點和難點。
課堂教學(xué)過程設(shè)計。
一、從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問題。
為了回答上述這幾個問題,我們來看下面這個例題.。
例1某數(shù)的3倍減2等于某數(shù)與4的和,求某數(shù).。
(首先,用算術(shù)方法解,由學(xué)生回答,教師板書)。
解法1:(4+2)÷(3-1)=3.。
答:某數(shù)為3.。
(其次,用代數(shù)方法來解,教師引導(dǎo),學(xué)生口述完成)。
解法2:設(shè)某數(shù)為x,則有3x-2=x+4.。
解之,得x=3.。
答:某數(shù)為3.。
二、師生共同分析、研究一元一次方程解簡單應(yīng)用題的方法和步驟。
師生共同分析:
1.本題中給出的已知量和未知量各是什么?
2.已知量與未知量之間存在著怎樣的相等關(guān)系?(原先重量-運出重量=剩余重量)。
上述分析過程可列表如下:
解:設(shè)原先有x千克面粉,那么運出了15%x千克,由題意,得。
x-15%x=42500,
所以x=50000.。
答:原先有50000千克面粉.。
(還有,原先重量=運出重量+剩余重量;原先重量-剩余重量=運出重量)。
(2)例2的解方程過程較為簡捷,同學(xué)應(yīng)注意模仿.。
依據(jù)例2的分析與解答過程,首先請同學(xué)們思考列一元一次方程解應(yīng)用題的方法和步驟;然后,采取提問的方式,進(jìn)行反饋;最后,根據(jù)學(xué)生總結(jié)的狀況,教師總結(jié)如下:
(2)根據(jù)題意找出能夠表示應(yīng)用題全部含義的一個相等關(guān)系.(這是關(guān)鍵一步);
(4)求出所列方程的解;
(仿照例2的分析方法分析本題,如學(xué)生在某處感到困難,教師應(yīng)做適當(dāng)點撥.解答過程請一名學(xué)生板演,教師巡視,及時糾正學(xué)生在書寫本題時可能出現(xiàn)的各種錯誤.并嚴(yán)格規(guī)范書寫格式)。
解:設(shè)第一小組有x個學(xué)生,依題意,得。
3x+9=5x-(5-4),
解這個方程:2x=10,
所以x=5.。
其蘋果數(shù)為3×5+9=24.。
答:第一小組有5名同學(xué),共摘蘋果24個.。
學(xué)生板演后,引導(dǎo)學(xué)生探討此題是否可有其他解法,并列出方程.。
(設(shè)第一小組共摘了x個蘋果,則依題意,得)。
三、課堂練習(xí)。
3.某工廠女工人占全廠總?cè)藬?shù)的35%,男工比女工多252人,求全廠總?cè)藬?shù).。
四、師生共同小結(jié)。
首先,讓學(xué)生回答如下問題:
1.本節(jié)課學(xué)習(xí)了哪些資料?
3.在運用上述方法和步驟時應(yīng)注意什么?
依據(jù)學(xué)生的回答狀況,教師總結(jié)如下:
(2)以上步驟同學(xué)應(yīng)在理解的基礎(chǔ)上記憶.。
五、作業(yè)。
1.買3千克蘋果,付出10元,找回3角4分.問每千克蘋果多少錢?
2.用76厘米長的鐵絲做一個長方形的教具,要使寬是16厘米,那么長是多少厘米?
一元一次函數(shù)教案篇六
2、內(nèi)容解析:教材的地位和作用:本節(jié)課主要是在學(xué)生學(xué)習(xí)了函數(shù)圖象的基礎(chǔ)上,通過動手操作接受一次函數(shù)圖象是直線這一事實,在實踐中體會兩點法的簡便,向?qū)W生滲透數(shù)形結(jié)合的數(shù)學(xué)思想,以使學(xué)生借助直觀的圖形,生動形象的變化來發(fā)現(xiàn)兩個一次函數(shù)圖象在直角坐標(biāo)系中的位置關(guān)系。培養(yǎng)學(xué)生主動學(xué)習(xí)、主動探索、合作學(xué)習(xí)的能力。本節(jié)課為探索一次函數(shù)性質(zhì)作準(zhǔn)備。
1、教學(xué)目標(biāo)的確定。
教學(xué)目標(biāo)是教學(xué)的.出發(fā)點和歸宿。因此,我根據(jù)新課標(biāo)的知識、能力和德育目標(biāo)的要求,以學(xué)生的認(rèn)知點,心理特點和本課的特點來制定教學(xué)目標(biāo)。
知識目標(biāo)。
(1)能用兩點法畫出一次函數(shù)的圖象。
(2)結(jié)合圖象,理解直線y=kx+b(k、b是常數(shù),k0)常數(shù)k和b的取值對于直線的位置的影響。
能力目標(biāo)。
(1)通過操作、觀察,培養(yǎng)學(xué)生動手和歸納的能力。
(2)結(jié)合具體情境向?qū)W生滲透數(shù)形結(jié)合的數(shù)學(xué)思想。
情感目標(biāo)。
(1)通過動手操作,觀察探索一次函數(shù)的特征,體驗數(shù)學(xué)研究和發(fā)現(xiàn)的過程,逐步培養(yǎng)學(xué)生在教學(xué)活動中的主動探索的意識和合作交流的習(xí)慣。
(2)讓學(xué)生通過直觀感知、動手操作去經(jīng)歷、體會規(guī)律形成的過程。
2、教學(xué)重點、難點。
用兩點法畫出一次函數(shù)的圖象是研究一次函數(shù)的性質(zhì)的基礎(chǔ),是本節(jié)課的重點。直線y=kx+b(k、b是常數(shù),k0)常數(shù)k和b的取值對于直線的位置的影響,是本節(jié)課的難點。關(guān)鍵是通過學(xué)生的直觀感知、動手操作、合作交流歸納其規(guī)律。
1、由用描點法畫函數(shù)的圖象的認(rèn)識,學(xué)生能接受一次函數(shù)的圖象是直線,結(jié)合兩點確定一條直線,學(xué)生能畫出一次函數(shù)圖象。
2、根據(jù)學(xué)生抽象歸納能力較差,學(xué)習(xí)直線y=kx+b(k、b是常數(shù),k0)常數(shù)k和b的取值對于直線的位置的影響有難度。所以教學(xué)中應(yīng)盡可能多地讓學(xué)生動手操作,突出圖象變化特征的探索過程,自主探索出其規(guī)律。
3、抓住初中學(xué)生的心理特征,運用直觀生動的形象,引發(fā)學(xué)生的興趣,吸引他們的注意力;另一方面積極創(chuàng)造條件和機(jī)會,讓學(xué)生發(fā)表見解,發(fā)揮學(xué)生學(xué)習(xí)的主動性。
恰當(dāng)運用現(xiàn)代教育技術(shù)手段,采用自主探究合作交流式教學(xué),讓學(xué)生動手操作,主動去探索,小組合作交流。而互動式教學(xué)將顧及到全體學(xué)生,讓全體學(xué)生都參與,達(dá)到優(yōu)生得到培養(yǎng),后進(jìn)生也有所收獲的效果。
(一)、設(shè)疑,導(dǎo)入新課(2分鐘)。
通過前面的學(xué)習(xí)我們可以發(fā)現(xiàn),一次函數(shù)是一種特殊的函數(shù),那么一次函數(shù)的圖象是什么形狀呢?一次函數(shù)的圖象。(板書課題)。
一元一次函數(shù)教案篇七
本節(jié)課的教學(xué)設(shè)計中堅持以學(xué)生發(fā)展為本。通過豐富的情境,活躍的討論,將教材中提供的幾個與生活密切相關(guān)的實際問題,抽象出相等的數(shù)量關(guān)系,建立數(shù)學(xué)模型。啟發(fā)學(xué)生逐層深入,多方位、多角度地思考問題,加強(qiáng)知識的綜合運用,尊重個體差異,幫助學(xué)生在自主探索與合作交流的過程中獲得數(shù)學(xué)活動經(jīng)驗,提高靈活解決實際問題的能力。
教學(xué)內(nèi)容分析。
本節(jié)課是人民教育出版社的義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書《數(shù)學(xué)》七年級上第二章第四節(jié)。列一元一次方程解決生產(chǎn)生活中的一些實際問題,是初中階段應(yīng)用數(shù)學(xué)知識解決實際問題的開端,同時也是今后學(xué)習(xí)列其它方程或方程組解決實際問題的基礎(chǔ)。
教學(xué)對象分析。
學(xué)生在小學(xué)學(xué)習(xí)時就已接觸過有關(guān)實際問題中的盈虧問題和省錢問題,掌握了盈虧問題和省錢問題的基本關(guān)系,并會解決一些簡單問題,同時,在本章前階段的學(xué)習(xí)中學(xué)習(xí)了一元一次方程的解法及列一元一次方程解實際問題建模的思想,但由于學(xué)生的認(rèn)知起點和學(xué)習(xí)能力存在差異,部分學(xué)生對于抽象數(shù)學(xué)模型可能感到困難,因此,教學(xué)時要注意學(xué)生的學(xué)習(xí)傾向,挖掘積極因素,力求不同的學(xué)生獲得不同的發(fā)展。
知識與技能目標(biāo)。
進(jìn)一步掌握生活中實際問題的方程解法,能找出實際問題中已知數(shù)、未知數(shù)和全部的等量關(guān)系,列一元一次方程加以解決。
過程與方法目標(biāo)。
主動參與數(shù)學(xué)活動,通過問題的`對比體會數(shù)學(xué)建模思想,形成良好的思維習(xí)慣。
情感、態(tài)度和價值觀目標(biāo)。
經(jīng)歷從生活中發(fā)現(xiàn)數(shù)學(xué)和應(yīng)用數(shù)學(xué)解決實際問題的過程,樹立多種方法解決問題的創(chuàng)新意識,品嘗成功的喜悅,激發(fā)應(yīng)用數(shù)學(xué)的熱情。
教學(xué)重點:1.體驗用多種方法解決實際問題的過程。
教學(xué)難點:體會實際問題的生活情節(jié),將數(shù)量關(guān)系抽象概括成為方程模型。
教學(xué)關(guān)鍵:調(diào)動全體學(xué)生的積極性,讓學(xué)生參與實踐,在實踐中提問、交流、合作、探索,正確地列出方程,解決問題。
利用多媒體課件引入問題,讓學(xué)生在實際背景下發(fā)現(xiàn)和理解數(shù)學(xué)問題。
問題1:銷售中的盈虧:
分析:兩件衣服共賣了120(=60x2)元,是盈是虧要看這家商店買進(jìn)這兩件衣服時花了多少錢,如果進(jìn)價大于售價就虧損,反之就盈利。
小組討論:
問題2:用那種燈省錢。
分析:問題中有基本的等量關(guān)系。
費用=燈的售價+電費。
一元一次函數(shù)教案篇八
一次函數(shù)的圖像與性質(zhì)的口訣:
一次函數(shù)是直線,圖像經(jīng)過三象限;。
正比例函數(shù)更簡單,經(jīng)過原點一直線;。
兩個系數(shù)k與b,作用之大莫小看,
k是斜率定夾角,b與y軸來相見,
k為正來右上斜,x增減y增減;。
k為負(fù)來左下展,變化規(guī)律正相反;。
k的絕對值越大,線離橫軸就越遠(yuǎn)。
一元一次函數(shù)教案篇九
一次函數(shù)解析式的求法一般是采用待定系法,對于學(xué)生而言,如何理解這種方法是解決這一問題的關(guān)鍵。
為了解決這個問題,我舉了這樣一個例子:已知直線y=kx+b經(jīng)過點(1,2)和點(-2,3)試求這個函數(shù)關(guān)系式?學(xué)生們很容易想到列方程組解決這個問題,我卻提出了一個比較簡單的問題,為什么你要選擇列方程組解決這個問題,你的目的是什么?我教的那個班的學(xué)生沉默了好久,是啊,對于學(xué)生來說,他們習(xí)慣于如何做題,卻從不想為什么采用這種方法,這種方法的出發(fā)點是什么?經(jīng)過一段時間的思考,有的學(xué)生終于答出了這個問題:他們說這是為了確定k,b的值,只要k,b的值確定了,那么一次函數(shù)解析式就確定下來了。而實際他們回答的恰恰是待定系數(shù)法的精髓,學(xué)生們只有能理解到這一點才能領(lǐng)會到待定系數(shù)法的精髓。進(jìn)而我總結(jié),如果知道一次函數(shù)圖象上個點就能確定它的解析式。如上例是顯而易見的兩點。
接著我給出另一個例題:已知一次函數(shù)圖象過點(1,-2),且與直線y=3x+2交y軸于同一點,試求該函數(shù)的解析式。這個題一個點顯而易見,另一個點是隱含的,學(xué)生們開始找到一個明線,通過分析找到了另一個暗線,最終大家一致認(rèn)為兩點確定一條直線,想求一次函數(shù)的解析式,只要找到兩個點的坐標(biāo)就行。
最后我出了一個例題:一個一次函數(shù)的圖象,與直線y=2x+1的交點m的橫坐標(biāo)為2,與直線y=-x+2的交點n的縱坐標(biāo)為1,求這個一次函數(shù)的解析式。學(xué)生們發(fā)現(xiàn)沒有一條明線,全是暗線,但只要理解找兩個點求一次函數(shù)解析式,看似難的問題就會迎刃而解。如果學(xué)生能理解透這三道其實是一類題,他們就會利用待定系數(shù)法求一次函數(shù)解析式了。
一元一次函數(shù)教案篇十
一、學(xué)生情況分析及改進(jìn)提高措施:
學(xué)生們經(jīng)過兩年的學(xué)習(xí),已經(jīng)具備了初步的邏輯思維能力和簡單的抽象概括能力,養(yǎng)成了一些良好的學(xué)習(xí)習(xí)慣,掌握了一些科學(xué)的學(xué)習(xí)方法,學(xué)會了獨立思考和與人溝通、協(xié)商、合作、交流的能力,學(xué)會了探究問題,并能根據(jù)具體情況提出合理的問題,還能正確解決問題的能力。無論是理解問題的.能力,還是分析、解決問題的能力均有所提高,基礎(chǔ)知識和基本技能打得也比較扎實,對數(shù)學(xué)學(xué)習(xí)有著濃厚的興趣,樂于參與到學(xué)習(xí)活動中去,特別是對一些動手操作,合作學(xué)習(xí),實踐活動等學(xué)習(xí)內(nèi)容尤為感興趣,因此,在教學(xué)中應(yīng)多設(shè)計一些活動,引導(dǎo)學(xué)生進(jìn)行獨立思考與合作交流,幫助學(xué)生積累參加數(shù)學(xué)學(xué)習(xí)活動的經(jīng)驗。
在數(shù)學(xué)知識上已經(jīng)掌握了兩步計算式題和有余數(shù)的除法,還有統(tǒng)計知識,并學(xué)會了辨認(rèn)八個方位;掌握了萬以內(nèi)數(shù)的讀法、寫法和加、減法;還掌握了長度單位毫米、厘米、分米、米和千米的實際長度和簡單的換算以及實際測量,并能用以上這些相應(yīng)的知識解決實際生活中的問題??傊?,這些技能和知識點都為本學(xué)期進(jìn)一步學(xué)習(xí)新知識打下了堅實的基礎(chǔ),他們愛學(xué)數(shù)學(xué)的熱情,以及對數(shù)學(xué)的感悟能力會在本學(xué)期進(jìn)一步得到發(fā)揚光大,他們的情感、態(tài)度、價值觀會沿著良性軌道螺旋式上升。
具體提高措施是:
1.從學(xué)生的年齡特點出發(fā),多采用情境活動式教學(xué),培養(yǎng)學(xué)生的參與意識。兩班學(xué)生都能根據(jù)教師給出的情境獲取相關(guān)的數(shù)學(xué)信息,并能根據(jù)有效信息提出數(shù)學(xué)問題,能積極投入到探索問題的活動中去,絕大部分學(xué)生能夠在課堂上主動的研究問題,獲取知識。
2.在課堂教學(xué)中,多增添一些與學(xué)生生活相關(guān)的利于孩子理解的問題,讓學(xué)生在解決問題的過程中能夠聯(lián)系到實際,便于對問題的理解。結(jié)合學(xué)生的生活實際,將問題生活化,讓學(xué)生從生活中獲取到更多的解決問題的素材。
3.課后練習(xí)注重增添以學(xué)習(xí)內(nèi)容為主的相關(guān)實踐練習(xí),加強(qiáng)各學(xué)科之間的聯(lián)系,少一些呆板的練習(xí),提高練習(xí)的實踐性和趣味性。在上學(xué)期的教學(xué)中,我發(fā)現(xiàn)學(xué)生們比較喜歡做不同科目之間有聯(lián)系的綜合性作業(yè),例如我把數(shù)學(xué)與科學(xué)課相結(jié)合,讓他們種豆子,了解植物的生長,并做記錄,再將每天的記錄制作成統(tǒng)計圖,學(xué)生完成作業(yè)的積極性特別高。我為了讓學(xué)生了解長度單位,讓他們從成語詞典上收集有關(guān)長度單位的成語,通過對詞語的理解把握其表示的長度。
4.加強(qiáng)學(xué)校教育和家庭教育的聯(lián)系。關(guān)注學(xué)生的平時學(xué)習(xí)情況,與學(xué)生家長多溝通交流。
二、本冊教材分析。
本冊教材充分體現(xiàn)了新《課程標(biāo)準(zhǔn)》的理念,以學(xué)生的數(shù)學(xué)活動實踐為學(xué)習(xí)內(nèi)容,教材創(chuàng)設(shè)了生動有趣的情境,引導(dǎo)學(xué)生在解決現(xiàn)實問題的過程中獲得對數(shù)學(xué)知識的理解和體驗。教學(xué)內(nèi)容主要包括(1)乘法;(2)除法;(3)觀察物體;(4)千克、克、噸;(5)、周長;(6)年、月、日;(7)可能性;(8)共有五個社會實踐活動,還有兩個整理復(fù)習(xí),一個總復(fù)習(xí)。具體特點是:
1.在數(shù)與代數(shù)的學(xué)習(xí)中,重視動手操作與抽象概括相結(jié)合,體驗乘、除法意義,發(fā)展了學(xué)生的數(shù)感和符號感。
2.在空間和圖形學(xué)習(xí)中,從學(xué)生的生活經(jīng)驗出發(fā),注重通過操作活動發(fā)展空間觀念。
3.教材為教師留下了創(chuàng)造空間,可結(jié)合自身教學(xué)要求,生發(fā)新的教學(xué)設(shè)想,內(nèi)化自己的教學(xué)設(shè)計。
三、總體教學(xué)目標(biāo):
(一)、知識與技能。
1.在單元學(xué)習(xí)中,學(xué)生通過“數(shù)一數(shù)”、“分一分”等活動,經(jīng)歷從具體情境中抽象出乘法除法算式,體會乘法與除法的意義。
2.學(xué)平面圖形的周長,會進(jìn)行周長的計算。
(二)、實踐能力培養(yǎng)。
1.觀察物體,引導(dǎo)學(xué)生經(jīng)歷觀察的過程,體驗從不同的位置觀察,所看到的物體可能是不一樣的。
2.結(jié)合生活情境,感受并認(rèn)識質(zhì)量單位。
3.經(jīng)歷對生活中某些現(xiàn)象進(jìn)行推理、判斷的過程,能對生活中的某些現(xiàn)象按一定的方法進(jìn)行邏輯推理、判斷其結(jié)果。
(三)、情感與態(tài)度。
1、讓學(xué)生在觀察和操作的學(xué)習(xí)活動中,能夠感受到思考的條理性和合理性。
2、教師重視對學(xué)生數(shù)學(xué)學(xué)習(xí)過程的評價,讓他們在感受到樂趣之外,應(yīng)具備必要的學(xué)習(xí)自信心,養(yǎng)成良好的學(xué)習(xí)習(xí)慣。
教研專題:
創(chuàng)設(shè)課堂學(xué)習(xí)情境,有效培養(yǎng)創(chuàng)新意識。
個人專題:
在情境中培養(yǎng)學(xué)生的自主學(xué)習(xí)意識,提高課堂的有效性。
一元一次函數(shù)教案篇十一
本課的內(nèi)容是人教版八年級上冊第14章第2節(jié)第2課時,就是課本115到116頁的內(nèi)容。在許多方面與正比例函數(shù)的圖象和性質(zhì)有著緊密聯(lián)系,是本章中的重點。本節(jié)課安排在正比例函數(shù)的圖象與一次函數(shù)的概念之后。通過這一節(jié)課的學(xué)習(xí)使學(xué)生掌握一次函數(shù)圖象的畫法和一次函數(shù)的性質(zhì)。它既是正比例函數(shù)的圖象和性質(zhì)的拓展,又是今后繼續(xù)學(xué)習(xí)“用函數(shù)觀點看方程(組)與不等式”的基礎(chǔ),在本章中起著承上啟下的作用。本節(jié)教學(xué)內(nèi)容還是學(xué)生進(jìn)一步學(xué)習(xí)“數(shù)形結(jié)合”這一數(shù)學(xué)思想方法的很好素材。作為一種數(shù)學(xué)模型,一次函數(shù)在日常生活中也有著極其廣泛的應(yīng)用。
(二)說教學(xué)目標(biāo)。
基于以上的教材分析,結(jié)合新課程標(biāo)準(zhǔn)的新理念,確立如下教學(xué)目標(biāo):
知識技能:
1、理解直線y=kx+b與y=kx之間的位置關(guān)系;。
2、會利用兩個合適的點畫出一次函數(shù)的圖象;。
數(shù)學(xué)思考:
2、通過一次函數(shù)的圖象總結(jié)函數(shù)的性質(zhì),體驗數(shù)形結(jié)合法的應(yīng)用,培養(yǎng)推理及抽象思維能力。
情感態(tài)度:
2、在探究一次函數(shù)的圖象和性質(zhì)的活動中,通過一系列富有探究性的問題,滲透與他人交流、合作的意識和探究精神。
(三)說教學(xué)重點難點。
教學(xué)難點:由一次函數(shù)的圖象歸納得出一次函數(shù)的性質(zhì)及對性質(zhì)的理解。
一元一次函數(shù)教案篇十二
依據(jù)當(dāng)前素質(zhì)教育的要求:以人為本,以學(xué)生為主體,讓教最大限度的服務(wù)與學(xué)。因此我選用了以下教學(xué)方法:
1、自學(xué)體驗法——利用學(xué)生描點作圖經(jīng)歷體驗并發(fā)現(xiàn)問題,分析問題進(jìn)一步歸納總結(jié)。
目的:通過這種教學(xué)方式來激發(fā)學(xué)生學(xué)習(xí)的積極主動性,培養(yǎng)學(xué)生獨立思考能力和創(chuàng)新意識。
2、直觀教學(xué)法——利用多媒體現(xiàn)代教學(xué)手段。
目的:通過圖片和材料的展示來激發(fā)學(xué)生學(xué)習(xí)興趣,把抽象的知識直觀的展現(xiàn)在學(xué)生面前,逐步將他們的感性認(rèn)識引領(lǐng)到理性的思考。
2、學(xué)法指導(dǎo)。
做為一名合格的老師,不止局限于知識的傳授,更重要的是使學(xué)生學(xué)會如何去學(xué)。本著這樣的原則,課上指導(dǎo)學(xué)生采用以下學(xué)習(xí)方法。
1、應(yīng)用自主探究。培養(yǎng)學(xué)生獨立思考能力,閱讀能力和自主探究的學(xué)習(xí)習(xí)慣。
2、指導(dǎo)學(xué)生觀察圖象,分析材料。培養(yǎng)觀察總結(jié)能力。
一元一次函數(shù)教案篇十三
2、把已知條件(自變量與函數(shù)對應(yīng)值)代入解析式,得到關(guān)于待定系數(shù)的方程(組);。
3、解方程(組),求出待定系數(shù);。
4、將求得的待定系數(shù)的值代回所設(shè)的函數(shù)解析式,從而得到所求函數(shù)解析式。
例、已知:一次函數(shù)的圖象經(jīng)過點(2,--1)和點(1,-2).
(1)求此一次函數(shù)的解析式;(2)求此一次函數(shù)與x軸、y軸的交點坐標(biāo)。
分析:一般一次函數(shù)有兩個待定字母k、b.要求解析式,只須將兩個獨立條件代入,再解方程組即可.凡涉及求兩個函數(shù)圖象的交點坐標(biāo)時,一般方法是將兩個函數(shù)的解析式組成方程組,求出方程組的解就求出了交點坐標(biāo).
解:(1)設(shè)函數(shù)解析式為y=kx+b.
(2)當(dāng)y=0時x=3,當(dāng)x=0時y=-3??傻弥本€與x軸交點(3,0)、與y軸交點(0,-3)。
評析:用待定系數(shù)法求函數(shù)解析式,求直線的交點均與解方程(組)有關(guān),因此必須重視函數(shù)與方程之間的關(guān)系.
一元一次函數(shù)教案篇十四
一次函數(shù)和代數(shù)式以及方程有著密不可分的聯(lián)系。如一次函數(shù)和正比例函數(shù)仍然是函數(shù),同時,等號的兩邊又都是代數(shù)式。需要注意的是,與一般代數(shù)式有很大區(qū)別。首先,一次函數(shù)和正比例函數(shù)都只能存在兩個變量,而代數(shù)式可以是多個變量;其次,一次函數(shù)中的變量指數(shù)只能是1,而代數(shù)式中變量指數(shù)還可以是1以外的數(shù)。另外,一次函數(shù)解析式也可以理解為二元一次方程。
一元一次函數(shù)教案篇十五
1、學(xué)生通過旅游、選燈、用電、水費、用氣、電信等問題的方案設(shè)計,弄清各類問題中的等量關(guān)系,掌握用方程來解決一些生活中的實際問題的技巧.
2、通過一個開放式的空間,放手讓學(xué)生去探索,去發(fā)現(xiàn),培養(yǎng)學(xué)生分析問題和用方程去解決實際問題的能力.
3、讓學(xué)生在生動活潑的問題情境中感受數(shù)學(xué)的應(yīng)用價值,產(chǎn)生對數(shù)學(xué)的興趣,養(yǎng)成認(rèn)真傾聽他人發(fā)言的習(xí)慣,感受與同伴交流的樂趣。
把生活中的實際問題抽象出數(shù)學(xué)問題。
引導(dǎo)學(xué)生弄清題意,設(shè)計出各類問題的最佳方案。
(師生活動)設(shè)計理念。
提出問題問題:小江一家三口準(zhǔn)備國慶節(jié)外出旅游.現(xiàn)有兩家。
由學(xué)生完成選擇旅行社的方案。從學(xué)生比較感興趣的實際生活問題,引入新課,并由學(xué)生自己設(shè)計出選擇旅行社的方案,為新授哪種燈省錢埋下伏筆。
分析問題出示教科書94頁探究2:用哪種燈省錢?
師生共同探討完成下列問題:
1、上述問題中基本等量關(guān)系有哪些?
(費用=燈的售價+電費,電費=0.5×燈的功率(千。
瓦)×照明時間(時)。
2、列式表示兩種燈的費用各為多少?
(節(jié)能燈用t小時的費用(元)為:60+0.5×0-o.11t。
白熾燈用t小時的費用(元)為:3十0.06×0.5t)。
3、當(dāng)照明時間t取何值時,(1)白熾燈比節(jié)能燈省錢,
(2)節(jié)能燈比白熾燈省錢?(3)白熾燈與節(jié)能燈費用一樣?(精確到1小時)。
4、如果計劃照明3500小時,則需要購買兩個燈,試設(shè)計你認(rèn)為能省錢的選燈方案。
以課本例題中實際生活問題為素材,使學(xué)生感受數(shù)學(xué)來源于生活,激發(fā)學(xué)生學(xué)數(shù)學(xué)的興趣,師生共同參與合作完成問題中的探討的幾個問題,體現(xiàn)了以學(xué)生為主體,教師作為問題解決的組織者,引導(dǎo)者,合作者的新課程教育理念。
探索創(chuàng)新下面問題是學(xué)生課前調(diào)查到的與人們生活密切相關(guān)的實際問題,每一大組完成一個,分四個小組討論后設(shè)計出最佳方案。
10分鐘后,大組派代表交流發(fā)言.
1、電價問題。
據(jù)我們調(diào)查,我市居民生活用電價格為每天早晨7時到晚上23時每度0.47元,每天23時到第二天7時每度0.25元.請根據(jù)你家每月用電情況,設(shè)計出用電的最佳方案.
2、水費問題。
我市為鼓勵節(jié)約用水,對自來水的收費標(biāo)準(zhǔn)作如下規(guī)定:每月每戶用水不超過10噸部分按0.45元/噸收費,超過10噸而不超過20噸部分按0.8元/噸收費,超過20噸部分按0.50元/噸收費,某月甲戶比乙戶多交水費3.75元,已知乙戶交水費3.15元.
問:(1)甲、乙兩戶該月各用水多少噸?(自來水按整噸收費)。
(2)根據(jù)你家用水情況,設(shè)計出最佳用水方案.
3、用氣問題。
某市按下列規(guī)定收取每月的煤氣費:用煤氣如果不超過60立方米,按每立方米o(hù).8元收費;如果超過60立方米,超過部分按每立方米1.2元收費.怎樣用氣最節(jié)約?請設(shè)計出方案來.
4、電信支費。
隨著電信事業(yè)的發(fā)展,各式各樣的電信業(yè)務(wù)不斷推出,請你通過市場調(diào)查,為你家設(shè)計出一種通訊方案.
(1)兩地間打長途電話所付電費有如下規(guī)定:若通話在3分鐘以內(nèi)都付2.4元.超過3分鐘以后,每分鐘付1元.
根據(jù)上述資料,(1)你認(rèn)為一個月通話多少分鐘,兩種移動通訊費用相同?(2)某人估計一個月內(nèi)通話300分鐘,應(yīng)選擇哪種移動通訊或用長途電話合算些?提供給學(xué)生一個開放的空間,放手讓學(xué)生去探索、去發(fā)揮,通過學(xué)生合作交流來設(shè)計最佳方案,培養(yǎng)學(xué)生用數(shù)學(xué)的意識和創(chuàng)新意識。
課堂小結(jié)可用教師對各小組交流的方案進(jìn)行簡單的評價作為小結(jié)。
布置作業(yè)1、必做題:課本第98頁習(xí)題2.4第5、7題。
2、選做題:
分層次布置作業(yè)。
本課教育評注(課堂設(shè)計理念,實際教學(xué)效果及改進(jìn)設(shè)想)。
本課以生活中的實際問題引入,以學(xué)生為主體,師生共同合作參與完成例中設(shè)計的。
幾個問題,教師在學(xué)生接受新知識的過程中,起到了一個組織者、合作者、引導(dǎo)者的角色.學(xué)生的學(xué)習(xí)始終是主動的.通過學(xué)生課前的社會調(diào)查,對生活中的一些方案以開放形式設(shè)計問題,學(xué)生通過小組合作交流,設(shè)計出不同的方案,讓學(xué)生在生動活潑的交流情境中感受到數(shù)學(xué)的應(yīng)用價值,產(chǎn)生對數(shù)學(xué)的興趣.同時養(yǎng)成認(rèn)真傾聽他人發(fā)言的習(xí)慣,感受與同伴交流想法的樂趣.通過用電、用水最佳方案的設(shè)計,培養(yǎng)學(xué)生節(jié)約用電、用水的意識.
一元一次函數(shù)教案篇十六
教學(xué)設(shè)計思想:
本節(jié)主要學(xué)習(xí)了平行四邊形的幾種判定方法,以及平行四邊形性質(zhì)、判定的應(yīng)用——三角形的中位線定理。通過問題情境引入平行四邊形判定的研究,首先通過直觀猜測判定的方法,再次通過幾何證明來證明它的正確性。充分發(fā)揮學(xué)生的主觀能動性。
教學(xué)目標(biāo)。
知識與技能:
1.總結(jié)出平行四邊形的三種判定方法;。
2.應(yīng)用平行四邊形的判定解決實際問題;。
3.應(yīng)用平行四邊形的性質(zhì)與判定得出三角形中位線定理;。
4.總結(jié)三角形與平行四邊形的相互轉(zhuǎn)化,學(xué)會基本的添輔助線法。
過程與方法:
1.經(jīng)歷平行四邊形判別條件的探索過程,逐步掌握說理的基本方法。
2.經(jīng)歷探究三角形中位線定理的過程,體會轉(zhuǎn)化思想在數(shù)學(xué)中的重要性。
情感態(tài)度價值觀:
1.在探究活動中,發(fā)展合情推理意識,養(yǎng)成主動探究的習(xí)慣;。
2.通過探索式證明法開拓思路,發(fā)展思維能力;。
3.在解決平行四邊形問題的過程中,不斷滲透轉(zhuǎn)化思想。
教學(xué)重難點。
重點:1.平行四邊形的判別條件;2.應(yīng)用平行四邊形的性質(zhì)和判定得出三角形中位線定理。
難點:1.靈活應(yīng)用平行四邊形的判別條件;2.合理添加輔助線;3.三角形與平行四邊形之間的合理轉(zhuǎn)化。
教學(xué)方法。
小組討論、合作探究。
課時安排。
3課時。
教學(xué)媒體。
課件、
教學(xué)過程。
第一課時。
(一)引入。